听力与言语-语言病理学

行为科学

医学伦理学

你正在浏览METABOLIC ENGINEERING期刊下所有文献
  • Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli.

    abstract::We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.005

    authors: Li S,Ye Z,Moreb EA,Hennigan JN,Castellanos DB,Yang T,Lynch MD

    更新日期:2021-01-16 00:00:00

  • Metabolic engineering of E. coli for pyocyanin production.

    abstract::Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.002

    authors: da Silva AJ,Cunha JS,Hreha T,Micocci KC,Selistre-de-Araujo HS,Barquera B,Koffas MAG

    更新日期:2021-01-14 00:00:00

  • Machine learning for metabolic engineering: A review.

    abstract::Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2020.10.005

    authors: Lawson CE,Martí JM,Radivojevic T,Jonnalagadda SVR,Gentz R,Hillson NJ,Peisert S,Kim J,Simmons BA,Petzold CJ,Singer SW,Mukhopadhyay A,Tanjore D,Dunn JG,Garcia Martin H

    更新日期:2021-01-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00

  • Punicic acid production in Brassica napus.

    abstract::Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.08.011

    authors: Xu Y,Mietkiewska E,Shah S,Weselake RJ,Chen G

    更新日期:2020-11-01 00:00:00

  • High-yield whole cell biosynthesis of Nylon 12 monomer with self-sufficient supply of multiple cofactors.

    abstract::Biosynthesis of Nylon 12 monomer using dodecanoic acid (DDA) or its esters as the renewable feedstock typically involves ω-hydroxylation, oxidation and ω-amination. The dependence of hydroxylation and oxidation-catalyzing enzymes on redox cofactors, and the requirement of L-alanine as the co-substrate and pyridoxal 5'...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.09.006

    authors: Ge J,Yang X,Yu H,Ye L

    更新日期:2020-11-01 00:00:00

  • A modular autoinduction device for control of gene expression in Bacillus subtilis.

    abstract::Intense synthesis of proteins and chemicals in engineered microbes impose metabolic burden, frequently leading to reduced growth and heterogeneous cell population. Thus, the correct balance between growth and production is important. Such balance can be engineered through dynamic control of pathways, but few broadly a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.03.012

    authors: Corrêa GG,Lins MRDCR,Silva BF,de Paiva GB,Zocca VFB,Ribeiro NV,Picheli FP,Mack M,Pedrolli DB

    更新日期:2020-09-01 00:00:00

  • Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.

    abstract::Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.006

    authors: Tovilla-Coutiño DB,Momany C,Eiteman MA

    更新日期:2020-09-01 00:00:00

  • Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system.

    abstract::Crocins and picrocrocin are glycosylated apocarotenoids responsible, respectively, for the color and the unique taste of the saffron spice, known as red gold due to its high price. Several studies have also shown the health-promoting properties of these compounds. However, their high costs hamper the wide use of these...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.009

    authors: Martí M,Diretto G,Aragonés V,Frusciante S,Ahrazem O,Gómez-Gómez L,Daròs JA

    更新日期:2020-09-01 00:00:00

  • Using biopolymer bodies for encapsulation of hydrophobic products in bacterium.

    abstract::Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.006

    authors: Liu Y,Low ZJ,Ma X,Liang H,Sinskey AJ,Stephanopoulos G,Zhou K

    更新日期:2020-09-01 00:00:00

  • Cell-free styrene biosynthesis at high titers.

    abstract::Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the l...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.05.009

    authors: Grubbe WS,Rasor BJ,Krüger A,Jewett MC,Karim AS

    更新日期:2020-09-01 00:00:00

  • Metabolic engineering of Amycolatopsis japonicum for optimized production of [S,S]-EDDS, a biodegradable chelator.

    abstract::The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persist...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.003

    authors: Edenhart S,Denneler M,Spohn M,Doskocil E,Kavšček M,Amon T,Kosec G,Smole J,Bardl B,Biermann M,Roth M,Wohlleben W,Stegmann E

    更新日期:2020-07-01 00:00:00

  • Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli.

    abstract::Numerous value-added chemicals can be produced using xylan as a feedstock. However, the product yields are limited by low xylan utilization efficiency, as well as by carbon flux competition between biomass production and biosynthesis. Herein, a dynamic consolidated bioprocessing strategy was developed, which coupled x...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.001

    authors: Gao C,Guo L,Ding Q,Hu G,Ye C,Liu J,Chen X,Liu L

    更新日期:2020-07-01 00:00:00

  • Systematic identification and elimination of flux bottlenecks in the aldehyde production pathway of Synechococcus elongatus PCC 7942.

    abstract::Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain perfo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.03.007

    authors: Cheah YE,Xu Y,Sacco SA,Babele PK,Zheng AO,Johnson CH,Young JD

    更新日期:2020-07-01 00:00:00

  • Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.

    abstract::Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.012

    authors: Hirokawa Y,Kubo T,Soma Y,Saruta F,Hanai T

    更新日期:2020-01-01 00:00:00

  • Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit.

    abstract::To mimic the delicately regulated metabolism in nature for improved efficiency, artificial and customized regulatory components for dynamically controlling metabolic networks in multiple layers are essential in laboratory engineering. For this purpose, a novel regulatory component for controlling vanillin biosynthetic...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.12.002

    authors: Liang C,Zhang X,Wu J,Mu S,Wu Z,Jin JM,Tang SY

    更新日期:2020-01-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00

  • Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue.

    abstract::The de novo synthesis of triglyceride (TG) fatty acids (FA) and glycerol can be measured with stable isotope tracers. However, these methods typically do not inform the contribution of a given substrate to specific pathways on these synthetic processes. We integrated deuterated water (2H2O) measurement of de novo lipo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.08.018

    authors: Silva JCP,Marques C,Martins FO,Viegas I,Tavares L,Macedo MP,Jones JG

    更新日期:2019-12-01 00:00:00

  • High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.

    abstract::Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metag...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.002

    authors: Ruprecht C,Bönisch F,Ilmberger N,Heyer TV,Haupt ETK,Streit WR,Rabausch U

    更新日期:2019-09-01 00:00:00

  • Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).

    abstract::Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for pro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.03.006

    authors: Chen Y,Chen XY,Du HT,Zhang X,Ma YM,Chen JC,Ye JW,Jiang XR,Chen GQ

    更新日期:2019-07-01 00:00:00

  • Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.

    abstract::L-aspartate is an important 4-carbon platform compound that can be used as the precursor of numerous chemical products. The bioproduction of L-aspartate directly from biomass resources is expected to provide a more cost-competitive technique route. Yet little metabolic engineering work on this matter has been carried ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.04.012

    authors: Piao X,Wang L,Lin B,Chen H,Liu W,Tao Y

    更新日期:2019-07-01 00:00:00

  • Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity.

    abstract::Cyanobacterial carboxysomes encapsulate carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Genetic deletion of the major structural proteins encoded within the ccm operon in Synechococcus sp. PCC 7002 (ΔccmKLMN) disrupts carboxysome formation and significantly affects cellular physiology...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.04.010

    authors: Abernathy MH,Czajka JJ,Allen DK,Hill NC,Cameron JC,Tang YJ

    更新日期:2019-07-01 00:00:00

  • Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.

    abstract::Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.006

    authors: Wu W,Zhang Y,Liu D,Chen Z

    更新日期:2019-03-01 00:00:00

  • Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.

    abstract::A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.003

    authors: Kim CL,Lee GM

    更新日期:2019-03-01 00:00:00

  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.

    abstract::Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and car...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.009

    authors: Ma T,Shi B,Ye Z,Li X,Liu M,Chen Y,Xia J,Nielsen J,Deng Z,Liu T

    更新日期:2019-03-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.

    abstract::Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and gl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.08.007

    authors: Kim HT,Khang TU,Baritugo KA,Hyun SM,Kang KH,Jung SH,Song BK,Park K,Oh MK,Kim GB,Kim HU,Lee SY,Park SJ,Joo JC

    更新日期:2019-01-01 00:00:00

  • Engineering Saccharomyces cerevisiae for production of simvastatin.

    abstract::Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvasta...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.005

    authors: Bond CM,Tang Y

    更新日期:2019-01-01 00:00:00

  • Streptomyces species: Ideal chassis for natural product discovery and overproduction.

    abstract::There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2018.05.015

    authors: Liu R,Deng Z,Liu T

    更新日期:2018-11-01 00:00:00

  • Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.

    abstract::Zerumbone, the predominant sesquiterpenoid component of Zingiber zerumbet, exhibits diverse pharmacological properties. In this study, de novo production of zerumbone was achieved in a metabolically engineered yeast cell factory by introducing α-humulene synthase (ZSS1), α-humulene 8-hydroxylase (CYP71BA1) and zerumbo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.010

    authors: Zhang C,Liu J,Zhao F,Lu C,Zhao GR,Lu W

    更新日期:2018-09-01 00:00:00

  • Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.

    abstract::Natural products are a rich source of potential drugs for many applications. Discovery of natural products through the activation of cryptic gene clusters encoding their biosynthetic pathways, engineering of those biosynthetic pathways and optimization of production yields often rely on the expression of these gene cl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.004

    authors: Myronovskyi M,Rosenkränzer B,Nadmid S,Pujic P,Normand P,Luzhetskyy A

    更新日期:2018-09-01 00:00:00

  • Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.

    abstract::Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to se...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.011

    authors: Tuyishime P,Wang Y,Fan L,Zhang Q,Li Q,Zheng P,Sun J,Ma Y

    更新日期:2018-09-01 00:00:00

  • Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli.

    abstract::Fucosyllactoses (FLs), present in human breast milk, have been reported to benefit human health immensely. Especially, 3-fucosyllactose (3-FL) has numerous benefits associated with a healthy gut ecosystem. Metabolic engineering of microorganisms is thought to be currently the only option to provide an economically fea...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.021

    authors: Yu J,Shin J,Park M,Seydametova E,Jung SM,Seo JH,Kweon DH

    更新日期:2018-07-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    abstract::Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the constructi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.002

    authors: Young EM,Zhao Z,Gielesen BEM,Wu L,Benjamin Gordon D,Roubos JA,Voigt CA

    更新日期:2018-07-01 00:00:00

  • Functional genomics for the oleaginous yeast Yarrowia lipolytica.

    abstract::Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enablin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.008

    authors: Patterson K,Yu J,Landberg J,Chang I,Shavarebi F,Bilanchone V,Sandmeyer S

    更新日期:2018-07-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    abstract::Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endog...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.03.007

    authors: Zhang J,Zong W,Hong W,Zhang ZT,Wang Y

    更新日期:2018-05-01 00:00:00

  • Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    abstract::Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The enginee...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.04.010

    authors: Nguyen AD,Hwang IY,Lee OK,Kim D,Kalyuzhnaya MG,Mariyana R,Hadiyati S,Kim MS,Lee EY

    更新日期:2018-05-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Production of muconic acid in plants.

    abstract::Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.002

    authors: Eudes A,Berthomieu R,Hao Z,Zhao N,Benites VT,Baidoo EEK,Loqué D

    更新日期:2018-03-01 00:00:00

168 条记录 1/5 页 « 12345 »