Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli.

Abstract:

:We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 20-fold and 90-fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and an NADPH generation pathway, consisting of pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over the regulation of the membrane bound transhydrogenase as well as NADPH production through pyruvate ferredoxin oxidoreductase to broadly enable improved NADPH dependent bioconversions or production via NADPH dependent metabolic pathways.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Li S,Ye Z,Moreb EA,Hennigan JN,Castellanos DB,Yang T,Lynch MD

doi

10.1016/j.ymben.2021.01.005

subject

Has Abstract

pub_date

2021-01-16 00:00:00

pages

26-40

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(21)00013-6

journal_volume

64

pub_type

杂志文章
  • Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT.

    abstract::3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD(+)-dependent γ-glutamyl-γ-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumon...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.09.004

    authors: Ashok S,Mohan Raj S,Ko Y,Sankaranarayanan M,Zhou S,Kumar V,Park S

    更新日期:2013-01-01 00:00:00

  • 13C metabolic flux analysis at a genome-scale.

    abstract::Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on pr...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.006

    authors: Gopalakrishnan S,Maranas CD

    更新日期:2015-11-01 00:00:00

  • Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum.

    abstract::The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different control...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0129

    authors: Lapujade P,Goergen JL,Engasser JM

    更新日期:1999-07-01 00:00:00

  • Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    abstract::Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characte...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.07.001

    authors: Curran KA,Karim AS,Gupta A,Alper HS

    更新日期:2013-09-01 00:00:00

  • Ensemble modeling for strain development of L-lysine-producing Escherichia coli.

    abstract::One of the main strategies to improve the production of relevant metabolites has been the manipulation of single or multiple key genes in the metabolic pathways. This kind of strategy requires several rounds of experiments to identify enzymes that impact either yield or productivity. The use of mathematical tools to f...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.04.002

    authors: Contador CA,Rizk ML,Asenjo JA,Liao JC

    更新日期:2009-07-01 00:00:00

  • Down-regulation of cold-inducible RNA-binding protein does not improve hypothermic growth of Chinese hamster ovary cells producing erythropoietin.

    abstract::Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EP...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.11.003

    authors: Hong JK,Kim YG,Yoon SK,Lee GM

    更新日期:2007-03-01 00:00:00

  • High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.

    abstract::Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metag...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.002

    authors: Ruprecht C,Bönisch F,Ilmberger N,Heyer TV,Haupt ETK,Streit WR,Rabausch U

    更新日期:2019-09-01 00:00:00

  • Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    abstract::Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity o...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.04.009

    authors: Xie W,Lv X,Ye L,Zhou P,Yu H

    更新日期:2015-07-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.

    abstract::The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environme...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.02.007

    authors: Choi KY,Wernick DG,Tat CA,Liao JC

    更新日期:2014-05-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    abstract::The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.001

    authors: Hirokawa Y,Maki Y,Hanai T

    更新日期:2017-01-01 00:00:00

  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    abstract::5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.011

    authors: Park SJ,Kim EY,Noh W,Park HM,Oh YH,Lee SH,Song BK,Jegal J,Lee SY

    更新日期:2013-03-01 00:00:00

  • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    abstract::Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endog...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.03.007

    authors: Zhang J,Zong W,Hong W,Zhang ZT,Wang Y

    更新日期:2018-05-01 00:00:00

  • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    abstract::Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the availabl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.01.009

    authors: Andreozzi S,Chakrabarti A,Soh KC,Burgard A,Yang TH,Van Dien S,Miskovic L,Hatzimanikatis V

    更新日期:2016-05-01 00:00:00

  • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.

    abstract::Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.10.011

    authors: Johnson AO,Gonzalez-Villanueva M,Wong L,Steinbüchel A,Tee KL,Xu P,Wong TS

    更新日期:2017-11-01 00:00:00

  • Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.

    abstract::Pigmented metabolites have great potential for use in biosensors that target low-resource areas, since sensor output can be interpreted without any equipment. However, full repression of pigment production when undesired is challenging, as even small amounts of enzyme can catalyze the production of large, visible amou...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.004

    authors: McNerney MP,Styczynski MP

    更新日期:2017-09-01 00:00:00

  • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    abstract::Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.006

    authors: Song JY,Park JS,Kang CD,Cho HY,Yang D,Lee S,Cho KM

    更新日期:2016-05-01 00:00:00

  • A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism.

    abstract::Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metab...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.12.003

    authors: Baughman AC,Sharfstein ST,Martin LL

    更新日期:2011-03-01 00:00:00

  • Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.

    abstract::Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.006

    authors: Wu W,Zhang Y,Liu D,Chen Z

    更新日期:2019-03-01 00:00:00

  • Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.

    abstract::L-aspartate is an important 4-carbon platform compound that can be used as the precursor of numerous chemical products. The bioproduction of L-aspartate directly from biomass resources is expected to provide a more cost-competitive technique route. Yet little metabolic engineering work on this matter has been carried ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.04.012

    authors: Piao X,Wang L,Lin B,Chen H,Liu W,Tao Y

    更新日期:2019-07-01 00:00:00

  • Metabolic fluxes and metabolic engineering.

    abstract::Metabolic engineering is the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology. As such, metabolic engineering emphasizes metabolic pathway integration and relies on metabolic fluxes as dete...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.1998.0101

    authors: Stephanopoulos G

    更新日期:1999-01-01 00:00:00

  • Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.

    abstract::Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.006

    authors: Tovilla-Coutiño DB,Momany C,Eiteman MA

    更新日期:2020-09-01 00:00:00

  • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.

    abstract::3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.01.005

    authors: Chen Y,Bao J,Kim IK,Siewers V,Nielsen J

    更新日期:2014-03-01 00:00:00

  • Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants.

    abstract::An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid me...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.03.001

    authors: Ruiz-Lopez N,Haslam RP,Usher SL,Napier JA,Sayanova O

    更新日期:2013-05-01 00:00:00

  • Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants.

    abstract::As a proof of concept, the qualitative and quantitative engineering of carotenoid formation has been achieved in crop plants. Successful reports in tomato, potato, rice, and canola all describe the enhancement of carotenoid with nutritional value, while in model systems such as tobacco and Arabidopsis the engineering ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2006.01.005

    authors: Sandmann G,Römer S,Fraser PD

    更新日期:2006-07-01 00:00:00

  • Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme.

    abstract::Ginsenoside Rh2 is a potential anticancer drug isolated from medicinal plant ginseng. Fermentative production of ginsenoside Rh2 in yeast has recently been investigated as an alternative strategy compared to extraction from plants. However, the titer was quite low due to low catalytic capability of the key ginseng gly...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.04.009

    authors: Zhuang Y,Yang GY,Chen X,Liu Q,Zhang X,Deng Z,Feng Y

    更新日期:2017-07-01 00:00:00

  • Genetically engineered yeasts as a new delivery vehicle of active compounds to the digestive tract: in vivo validation of the concept in the rat.

    abstract::An innovative "biodrug" concept based on oral administration of living recombinant microorganisms as a vehicle to deliver active compounds directly into the digestive tract has recently been developed. To validate this concept, we studied a recombinant Saccharomyces cerevisiae strain in order to investigate its viabil...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.01.001

    authors: Garrait G,Jarrige JF,Blanquet-Diot S,Alric M

    更新日期:2009-05-01 00:00:00

  • Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

    abstract::β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.05.004

    authors: Kallscheuer N,Polen T,Bott M,Marienhagen J

    更新日期:2017-07-01 00:00:00

  • Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose.

    abstract::Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, overexpressing endogen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.07.001

    authors: Zhang B,Skory CD,Yang ST

    更新日期:2012-09-01 00:00:00