Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.

Abstract:

:3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is widely investigated and is centered on bacterial systems in most cases. However, bacteria present certain drawbacks for large-scale organic acid production. In this study, we have evaluated the production of 3-HP in the budding yeast Saccharomyces cerevisiae through a route from malonyl-CoA, because this allows performing the fermentation at low pH thus making the overall process cheaper. We have further engineered the host strain by increasing availability of the precursor malonyl-CoA and by coupling the production with increased NADPH supply we were able to substantially improve 3-HP production by five-fold, up to a final titer of 463 mg l⁻¹. Our work thus led to a demonstration of 3-HP production in yeast via the malonyl-CoA pathway, and this opens for the use of yeast as a cell factory for production of bio-based 3-HP and derived acrylates in the future.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Chen Y,Bao J,Kim IK,Siewers V,Nielsen J

doi

10.1016/j.ymben.2014.01.005

subject

Has Abstract

pub_date

2014-03-01 00:00:00

pages

104-9

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(14)00006-8

journal_volume

22

pub_type

杂志文章
  • Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli.

    abstract::The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology acc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.09.003

    authors: Lim JH,Seo SW,Kim SY,Jung GY

    更新日期:2013-11-01 00:00:00

  • High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.

    abstract::Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.011

    authors: Takpho N,Watanabe D,Takagi H

    更新日期:2018-03-01 00:00:00

  • Characterizing metabolic pathway diversification in the context of perturbation size.

    abstract::Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.11.013

    authors: Yang L,Srinivasan S,Mahadevan R,Cluett WR

    更新日期:2015-03-01 00:00:00

  • A modular autoinduction device for control of gene expression in Bacillus subtilis.

    abstract::Intense synthesis of proteins and chemicals in engineered microbes impose metabolic burden, frequently leading to reduced growth and heterogeneous cell population. Thus, the correct balance between growth and production is important. Such balance can be engineered through dynamic control of pathways, but few broadly a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.03.012

    authors: Corrêa GG,Lins MRDCR,Silva BF,de Paiva GB,Zocca VFB,Ribeiro NV,Picheli FP,Mack M,Pedrolli DB

    更新日期:2020-09-01 00:00:00

  • Quantitative prediction of genome-wide resource allocation in bacteria.

    abstract::Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.10.003

    authors: Goelzer A,Muntel J,Chubukov V,Jules M,Prestel E,Nölker R,Mariadassou M,Aymerich S,Hecker M,Noirot P,Becher D,Fromion V

    更新日期:2015-11-01 00:00:00

  • Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions.

    abstract::(13)C metabolic flux analysis (MFA) has become an important and powerful tool for the quantitative analysis of metabolic networks in the framework of metabolic engineering. Isotopically instationary (13)C MFA under metabolic stationary conditions is a promising refinement of classical stationary MFA. It accounts for t...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.05.006

    authors: Nöh K,Wahl A,Wiechert W

    更新日期:2006-11-01 00:00:00

  • Using biopolymer bodies for encapsulation of hydrophobic products in bacterium.

    abstract::Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.006

    authors: Liu Y,Low ZJ,Ma X,Liang H,Sinskey AJ,Stephanopoulos G,Zhou K

    更新日期:2020-09-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.

    abstract::Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and gl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.08.007

    authors: Kim HT,Khang TU,Baritugo KA,Hyun SM,Kang KH,Jung SH,Song BK,Park K,Oh MK,Kim GB,Kim HU,Lee SY,Park SJ,Joo JC

    更新日期:2019-01-01 00:00:00

  • A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing.

    abstract::We generated a genomic library from sheared Clostridium acetobutylicum ATCC 824 DNA, whereby inserts can be expressed in both directions from the thiolase promoter, P(thl). Serial transfer of library-bearing C. acetobutylicum cultures exposed to increasing butyrate concentrations enriched for inserts containing fragme...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.12.004

    authors: Borden JR,Jones SW,Indurthi D,Chen Y,Papoutsakis ET

    更新日期:2010-05-01 00:00:00

  • High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.

    abstract::Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metag...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.002

    authors: Ruprecht C,Bönisch F,Ilmberger N,Heyer TV,Haupt ETK,Streit WR,Rabausch U

    更新日期:2019-09-01 00:00:00

  • Impact of 'ome' analyses on inverse metabolic engineering.

    abstract::Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences and insight into their ce...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.11.005

    authors: Bro C,Nielsen J

    更新日期:2004-07-01 00:00:00

  • Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions.

    abstract::Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pse...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.03.003

    authors: Taymaz-Nikerel H,van Gulik WM,Heijnen JJ

    更新日期:2011-05-01 00:00:00

  • Spatial organization of enzymes for metabolic engineering.

    abstract::As synthetic pathways built from exogenous enzymes become more complicated, the probability of encountering undesired interactions with host organisms increases, thereby lowering product titer. An emerging strategy to combat this problem is to spatially organize pathway enzymes into multi-protein complexes, where high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2011.09.003

    authors: Lee H,DeLoache WC,Dueber JE

    更新日期:2012-05-01 00:00:00

  • Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.

    abstract::Natural products are a rich source of potential drugs for many applications. Discovery of natural products through the activation of cryptic gene clusters encoding their biosynthetic pathways, engineering of those biosynthetic pathways and optimization of production yields often rely on the expression of these gene cl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.004

    authors: Myronovskyi M,Rosenkränzer B,Nadmid S,Pujic P,Normand P,Luzhetskyy A

    更新日期:2018-09-01 00:00:00

  • An engineered E.coli strain for the production of glycoglycerolipids.

    abstract::The glycolipid synthase MG517 from Mycoplasma genitalium catalyzes the glucosyl transfer from UDPGlc to diacylglycerol producing glycoglycerolipids (GGL) (Andrés et al., 2011). The enzyme was functional in E. coli accumulating GGL in the plasma membrane. A metabolic engineering strategy for GGL production was evaluate...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.06.001

    authors: Mora-Buyé N,Faijes M,Planas A

    更新日期:2012-09-01 00:00:00

  • A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

    abstract::A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00023-5

    authors: Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

    更新日期:2003-04-01 00:00:00

  • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose.

    abstract::Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2002.0226

    authors: Yang C,Hua Q,Shimizu K

    更新日期:2002-07-01 00:00:00

  • A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    abstract::Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulat...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.06.002

    authors: Wang J,Cui X,Yang L,Zhang Z,Lv L,Wang H,Zhao Z,Guan N,Dong L,Chen R

    更新日期:2017-07-01 00:00:00

  • Production of muconic acid in plants.

    abstract::Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.002

    authors: Eudes A,Berthomieu R,Hao Z,Zhao N,Benites VT,Baidoo EEK,Loqué D

    更新日期:2018-03-01 00:00:00

  • Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    abstract::The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.04.006

    authors: Curran KA,Alper HS

    更新日期:2012-07-01 00:00:00

  • Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.

    abstract::Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.006

    authors: Wu W,Zhang Y,Liu D,Chen Z

    更新日期:2019-03-01 00:00:00

  • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.

    abstract::Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enable...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.06.006

    authors: Li Y,Lin Z,Huang C,Zhang Y,Wang Z,Tang YJ,Chen T,Zhao X

    更新日期:2015-09-01 00:00:00

  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    abstract::5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.011

    authors: Park SJ,Kim EY,Noh W,Park HM,Oh YH,Lee SH,Song BK,Jegal J,Lee SY

    更新日期:2013-03-01 00:00:00

  • High-yield whole cell biosynthesis of Nylon 12 monomer with self-sufficient supply of multiple cofactors.

    abstract::Biosynthesis of Nylon 12 monomer using dodecanoic acid (DDA) or its esters as the renewable feedstock typically involves ω-hydroxylation, oxidation and ω-amination. The dependence of hydroxylation and oxidation-catalyzing enzymes on redox cofactors, and the requirement of L-alanine as the co-substrate and pyridoxal 5'...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.09.006

    authors: Ge J,Yang X,Yu H,Ye L

    更新日期:2020-11-01 00:00:00

  • Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    abstract::Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.12.005

    authors: Li S,Xu N,Liu L,Chen J

    更新日期:2014-03-01 00:00:00

  • Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1.

    abstract::Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.008

    authors: Qiao K,Chooi YH,Tang Y

    更新日期:2011-11-01 00:00:00

  • Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology.

    abstract::Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of cau...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.10.008

    authors: Kelleher JK

    更新日期:2004-01-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00

  • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    abstract::Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.006

    authors: Song JY,Park JS,Kang CD,Cho HY,Yang D,Lee S,Cho KM

    更新日期:2016-05-01 00:00:00

  • Engineering Saccharomyces cerevisiae for production of simvastatin.

    abstract::Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvasta...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.005

    authors: Bond CM,Tang Y

    更新日期:2019-01-01 00:00:00