Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions.

Abstract:

:(13)C metabolic flux analysis (MFA) has become an important and powerful tool for the quantitative analysis of metabolic networks in the framework of metabolic engineering. Isotopically instationary (13)C MFA under metabolic stationary conditions is a promising refinement of classical stationary MFA. It accounts for the experimental requirements of non-steady-state cultures as well as for the shortening of the experimental duration. This contribution extends all computational methods developed for classical stationary (13)C MFA to the instationary situation by using high-performance computing methods. The developed tools allow for the simulation of instationary carbon labeling experiments (CLEs), sensitivity calculation with respect to unknown parameters, fitting of the model to the measured data, statistical identifiability analysis and an optimal experimental design facility. To explore the potential of the new approach all these tools are applied to the central metabolism of Escherichia coli. The achieved results are compared to the outcome of the stationary counterpart, especially focusing on statistical properties. This demonstrates the specific strengths of the instationary method. A new ranking method is proposed making both an a priori and an a posteriori design of the sampling times available. It will be shown that although still not all fluxes are identifiable, the quality of flux estimates can be strongly improved in the instationary case. Moreover, statements about the size of some immeasurable pool sizes can be made.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Nöh K,Wahl A,Wiechert W

doi

10.1016/j.ymben.2006.05.006

subject

Has Abstract

pub_date

2006-11-01 00:00:00

pages

554-77

issue

6

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(06)00044-9

journal_volume

8

pub_type

杂志文章
  • The organization of metabolic reaction networks. II. Signal processing in hierarchical structured functional units.

    abstract::Based on the analysis of molecular interactions of proteins with DNA binding sites, a new approach to developing mathematical models describing gene expression is introduced. Detection of hierarchical structures in metabolic networks can be used to decompose complex reaction schemes. This will be achieved by assigning...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2000.0175

    authors: Kremling A,Gilles ED

    更新日期:2001-04-01 00:00:00

  • Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

    abstract::β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.05.004

    authors: Kallscheuer N,Polen T,Bott M,Marienhagen J

    更新日期:2017-07-01 00:00:00

  • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.

    abstract::Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.10.011

    authors: Johnson AO,Gonzalez-Villanueva M,Wong L,Steinbüchel A,Tee KL,Xu P,Wong TS

    更新日期:2017-11-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue.

    abstract::The de novo synthesis of triglyceride (TG) fatty acids (FA) and glycerol can be measured with stable isotope tracers. However, these methods typically do not inform the contribution of a given substrate to specific pathways on these synthetic processes. We integrated deuterated water (2H2O) measurement of de novo lipo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.08.018

    authors: Silva JCP,Marques C,Martins FO,Viegas I,Tavares L,Macedo MP,Jones JG

    更新日期:2019-12-01 00:00:00

  • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    abstract::Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-gui...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.09.006

    authors: Li H,Shen CR,Huang CH,Sung LY,Wu MY,Hu YC

    更新日期:2016-11-01 00:00:00

  • Engineering Saccharomyces cerevisiae for production of simvastatin.

    abstract::Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvasta...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.005

    authors: Bond CM,Tang Y

    更新日期:2019-01-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering.

    abstract::Cell culture engineering has to-date used transcriptomic, proteomic, and metabolic flux analyses, attempting to resolve significant questions regarding cell culture performance. Despite the foreseen positive impact, the metabolomic analytical platform has not yet been vastly deployed. Presently, there is no published ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.11.001

    authors: Chrysanthopoulos PK,Goudar CT,Klapa MI

    更新日期:2010-05-01 00:00:00

  • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.

    abstract::Saccharomyces cerevisiae lacks the ability to ferment the pentose sugar xylose that is the second most abundant sugar in nature. Therefore two different xylose catabolic pathways have been heterologously expressed in S. cerevisiae. Whereas the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway leads to the prod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.05.005

    authors: Parachin NS,Bergdahl B,van Niel EW,Gorwa-Grauslund MF

    更新日期:2011-09-01 00:00:00

  • Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    abstract::The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.001

    authors: Hirokawa Y,Maki Y,Hanai T

    更新日期:2017-01-01 00:00:00

  • A modular autoinduction device for control of gene expression in Bacillus subtilis.

    abstract::Intense synthesis of proteins and chemicals in engineered microbes impose metabolic burden, frequently leading to reduced growth and heterogeneous cell population. Thus, the correct balance between growth and production is important. Such balance can be engineered through dynamic control of pathways, but few broadly a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.03.012

    authors: Corrêa GG,Lins MRDCR,Silva BF,de Paiva GB,Zocca VFB,Ribeiro NV,Picheli FP,Mack M,Pedrolli DB

    更新日期:2020-09-01 00:00:00

  • Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.

    abstract::Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caf...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.09.011

    authors: Wang J,Mahajani M,Jackson SL,Yang Y,Chen M,Ferreira EM,Lin Y,Yan Y

    更新日期:2017-11-01 00:00:00

  • Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli.

    abstract::Previous work in our laboratories investigated the use of methyl alpha-glucoside (alpha-MG), a glucose analog that shares a phosphotransferase system with glucose, to modulate glucose uptake and therefore reduce acetate accumulation. The results of that study showed a significant improvement in batch culture performan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0141

    authors: Berríos-Rivera SJ,Yang YT,Bennett GN,San KY

    更新日期:2000-04-01 00:00:00

  • Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    abstract::Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The enginee...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.04.010

    authors: Nguyen AD,Hwang IY,Lee OK,Kim D,Kalyuzhnaya MG,Mariyana R,Hadiyati S,Kim MS,Lee EY

    更新日期:2018-05-01 00:00:00

  • Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    abstract::Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, b...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.02.004

    authors: Veiga T,Gombert AK,Landes N,Verhoeven MD,Kiel JA,Krikken AM,Nijland JG,Touw H,Luttik MA,van der Toorn JC,Driessen AJ,Bovenberg RA,van den Berg MA,van der Klei IJ,Pronk JT,Daran JM

    更新日期:2012-07-01 00:00:00

  • Production of muconic acid in plants.

    abstract::Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.002

    authors: Eudes A,Berthomieu R,Hao Z,Zhao N,Benites VT,Baidoo EEK,Loqué D

    更新日期:2018-03-01 00:00:00

  • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.

    abstract::3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.01.005

    authors: Chen Y,Bao J,Kim IK,Siewers V,Nielsen J

    更新日期:2014-03-01 00:00:00

  • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.

    abstract::Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enable...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.06.006

    authors: Li Y,Lin Z,Huang C,Zhang Y,Wang Z,Tang YJ,Chen T,Zhao X

    更新日期:2015-09-01 00:00:00

  • A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism.

    abstract::Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metab...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.12.003

    authors: Baughman AC,Sharfstein ST,Martin LL

    更新日期:2011-03-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • A biosynthetic route for polysialylating proteins in Escherichia coli.

    abstract::Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in v...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.10.012

    authors: Keys TG,Wetter M,Hang I,Rutschmann C,Russo S,Mally M,Steffen M,Zuppiger M,Müller F,Schneider J,Faridmoayer A,Lin CW,Aebi M

    更新日期:2017-11-01 00:00:00

  • Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum.

    abstract::Metabolic engineering technology for industrial microorganisms is under development to create rational, more reliable, and more cost-effective approaches to strain improvement. Strain improvement is a critical component of the drug development process, yet the genetic basis for high production by industrial microorgan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.03.003

    authors: Reeves AR,Cernota WH,Brikun IA,Wesley RK,Weber JM

    更新日期:2004-10-01 00:00:00

  • The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose.

    abstract::A mathematical model to describe carbon catabolite repression in Escherichia coli is developed and in part validated. The model is aggregated from two functional units describing glucose and lactose transport and degradation. Both units are members of the crp modulon and are under control of a global signal transducti...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2001.0199

    authors: Kremling A,Bettenbrock K,Laube B,Jahreis K,Lengeler JW,Gilles ED

    更新日期:2001-10-01 00:00:00

  • Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

    abstract::Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-typ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.003

    authors: Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

    更新日期:2017-09-01 00:00:00

  • Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.

    abstract::Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.006

    authors: Wu W,Zhang Y,Liu D,Chen Z

    更新日期:2019-03-01 00:00:00

  • Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes.

    abstract::Actinomycetes produce a large variety of pharmaceutically active compounds, yet production titers often require to be improved for discovery, development and large-scale manufacturing. Here, we describe a new technique, multiplexed site-specific genome engineering (MSGE) via the 'one integrase-multiple attB sites' con...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.01.004

    authors: Li L,Zheng G,Chen J,Ge M,Jiang W,Lu Y

    更新日期:2017-03-01 00:00:00

  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    abstract::Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-C...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.003

    authors: Rodriguez A,Kildegaard KR,Li M,Borodina I,Nielsen J

    更新日期:2015-09-01 00:00:00

  • A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    abstract::Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.010

    authors: Formighieri C,Melis A

    更新日期:2015-11-01 00:00:00

  • Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    abstract::This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and fi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.01.001

    authors: Priesnitz C,Niklas J,Rose T,Sandig V,Heinzle E

    更新日期:2012-03-01 00:00:00