Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

Abstract:

:Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-type bacterium. K. pneumoniae is a 2,3-butanediol producer, and the synthesis pathways of 2,3-butanediol, valine and isobutanol all start from condensation of two pyruvate molecules to yield α-acetolactate. Inactivation of α-acetolactate decarboxylase (encoded by budA) resulted in α-acetolactate flowing into the valine pathway, which led to synthesis of isobutanol and 2-ketoisovalerate (a precursor of isobutanol). ldhA (lactate dehydrogenase) deletion further increased the isobutanol and 2-ketoisovalerate production. In the first step of this pathway, BudB (α-acetolactate synthase) was identified as responsible for most of the α-acetolactate synthesis. Complementation of ilvBN or ilvIH (isoenzymes of budB) both resulted in a remarkable increase in 2-ketoisovalerate production. Thus, α-acetolactate formation is the rate-limiting step of 2-ketoisovalerate production. ilvC (acetohydroxy acid isomeroreductase) and ilvD (dihydroxy acid dehydratase) were identified responsible for 2-ketoisovalerate synthesis from α-acetolactate. ipdC, which encodes an indole-3-pyruvate decarboxylase, was identified responsible for most of the isobutyraldehyde formation from 2-ketoisovalerate, and isobutanol production was increased 15.7 fold in the ipdC complementation strain, with a final titer of 2.45g/L. Isobutanol dehydrogenase activity is distributed across multiple alcohol dehydrogenase enzymes expressed by K. pneumoniae. BudC, DhaT, DhaD and YqhD all had isobutanol dehydrogenase activity in vitro. YqhD uses NADPH as the coenzyme, while the other dehydrogenases use NADH. However, inactivating one or two of these dehydrogenases had no effect on isobutanol production in vivo with isobutyraldehyde as the substrate. These results reveal a novel method for biological production of isobutanol and 2-ketoisovalerate.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

doi

10.1016/j.ymben.2017.07.003

subject

Has Abstract

pub_date

2017-09-01 00:00:00

pages

71-84

issue

Pt A

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(17)30049-6

journal_volume

43

pub_type

杂志文章
  • Methods and applications for assembling large DNA constructs.

    abstract::The construction of large DNA molecules that encode pathways, biological machinery, and entire genomes has been limited to the reproduction of natural sequences. However, now that robust methods for assembling hundreds of DNA fragments into constructs > 20 kb are readily available, optimization of large genetic elemen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.02.005

    authors: Merryman C,Gibson DG

    更新日期:2012-05-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • Geobacter sulfurreducens strain engineered for increased rates of respiration.

    abstract::Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these proces...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.06.005

    authors: Izallalen M,Mahadevan R,Burgard A,Postier B,Didonato R Jr,Sun J,Schilling CH,Lovley DR

    更新日期:2008-09-01 00:00:00

  • Machine learning for metabolic engineering: A review.

    abstract::Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2020.10.005

    authors: Lawson CE,Martí JM,Radivojevic T,Jonnalagadda SVR,Gentz R,Hillson NJ,Peisert S,Kim J,Simmons BA,Petzold CJ,Singer SW,Mukhopadhyay A,Tanjore D,Dunn JG,Garcia Martin H

    更新日期:2021-01-01 00:00:00

  • Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.

    abstract::3-Ketosteroid-△(1)-dehydrogenase (KstD) is a key enzyme involved in the microbial catabolism of sterols. Here, three homologues of KstD were characterized from Mycobacterium neoaurum ATCC 25795, showing distinct substrate preferences and transcriptional responses to steroids. Single deletion of any MN-kstD failed to r...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.05.005

    authors: Yao K,Xu LQ,Wang FQ,Wei DZ

    更新日期:2014-07-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.

    abstract::A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.003

    authors: Kim CL,Lee GM

    更新日期:2019-03-01 00:00:00

  • Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.

    abstract::Current studies on microbial isoprene biosynthesis have mostly focused on regulation of the upstream mevalonic acid (MVA) or methyl-erythritol-4-phosphate (MEP) pathway. However, the downstream bottleneck restricting isoprene biosynthesis capacity caused by the weak expression and low activity of plant isoprene syntha...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.011

    authors: Wang F,Lv X,Xie W,Zhou P,Zhu Y,Yao Z,Yang C,Yang X,Ye L,Yu H

    更新日期:2017-01-01 00:00:00

  • Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.

    abstract::A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.01.002

    authors: Wu H,Tuli L,Bennett GN,San KY

    更新日期:2015-03-01 00:00:00

  • Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

    abstract::Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.007

    authors: Nduko JM,Matsumoto K,Ooi T,Taguchi S

    更新日期:2013-01-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism.

    abstract::Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metab...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.12.003

    authors: Baughman AC,Sharfstein ST,Martin LL

    更新日期:2011-03-01 00:00:00

  • A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

    abstract::A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00023-5

    authors: Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

    更新日期:2003-04-01 00:00:00

  • 13C metabolic flux analysis at a genome-scale.

    abstract::Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on pr...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.006

    authors: Gopalakrishnan S,Maranas CD

    更新日期:2015-11-01 00:00:00

  • Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors.

    abstract::Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function,...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.11.005

    authors: Lorendeau D,Rinaldi G,Boon R,Spincemaille P,Metzger K,Jäger C,Christen S,Dong X,Kuenen S,Voordeckers K,Verstreken P,Cassiman D,Vermeersch P,Verfaillie C,Hiller K,Fendt SM

    更新日期:2017-09-01 00:00:00

  • Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma.

    abstract::Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation redu...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(02)00011-3

    authors: Chan C,Berthiaume F,Lee K,Yarmush ML

    更新日期:2003-01-01 00:00:00

  • Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    abstract::This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and fi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.01.001

    authors: Priesnitz C,Niklas J,Rose T,Sandig V,Heinzle E

    更新日期:2012-03-01 00:00:00

  • Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    abstract::Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The enginee...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.04.010

    authors: Nguyen AD,Hwang IY,Lee OK,Kim D,Kalyuzhnaya MG,Mariyana R,Hadiyati S,Kim MS,Lee EY

    更新日期:2018-05-01 00:00:00

  • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.

    abstract::This paper presents a new mathematical framework for modeling of in vivo dynamics and for metabolic re-design: the linlog approach. This approach is an extension of metabolic control analysis (MCA), valid for large changes of enzyme and metabolite levels. Furthermore, the presented framework combines MCA with kinetic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00025-9

    authors: Visser D,Heijnen JJ

    更新日期:2003-07-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    abstract::To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.10.002

    authors: Xue J,Niu YF,Huang T,Yang WD,Liu JS,Li HY

    更新日期:2015-01-01 00:00:00

  • An engineered E.coli strain for the production of glycoglycerolipids.

    abstract::The glycolipid synthase MG517 from Mycoplasma genitalium catalyzes the glucosyl transfer from UDPGlc to diacylglycerol producing glycoglycerolipids (GGL) (Andrés et al., 2011). The enzyme was functional in E. coli accumulating GGL in the plasma membrane. A metabolic engineering strategy for GGL production was evaluate...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.06.001

    authors: Mora-Buyé N,Faijes M,Planas A

    更新日期:2012-09-01 00:00:00

  • Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    abstract::A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetob...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.004

    authors: Jang YS,Im JA,Choi SY,Lee JI,Lee SY

    更新日期:2014-05-01 00:00:00

  • Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli.

    abstract::Previous work in our laboratories investigated the use of methyl alpha-glucoside (alpha-MG), a glucose analog that shares a phosphotransferase system with glucose, to modulate glucose uptake and therefore reduce acetate accumulation. The results of that study showed a significant improvement in batch culture performan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0141

    authors: Berríos-Rivera SJ,Yang YT,Bennett GN,San KY

    更新日期:2000-04-01 00:00:00

  • Step changes in leaf oil accumulation via iterative metabolic engineering.

    abstract::Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.007

    authors: Vanhercke T,Divi UK,El Tahchy A,Liu Q,Mitchell M,Taylor MC,Eastmond PJ,Bryant F,Mechanicos A,Blundell C,Zhi Y,Belide S,Shrestha P,Zhou XR,Ral JP,White RG,Green A,Singh SP,Petrie JR

    更新日期:2017-01-01 00:00:00

  • Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal.

    abstract::An engineered reversal of the β-oxidation cycle (r-BOX) and the fatty acid biosynthesis (FAB) pathway are promising biological platforms for advanced fuel and chemical production in part due to their iterative nature supporting the synthesis of various chain length products. While diverging in their carbon-carbon elon...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.003

    authors: Clomburg JM,Contreras SC,Chou A,Siegel JB,Gonzalez R

    更新日期:2018-01-01 00:00:00

  • Metabolic engineering to enhance the value of plants as green factories.

    abstract::The promise of plants to serve as the green factories of the future is ever increasing. Plants have been used traditionally for construction, energy, food and feed. Bioactive compounds primarily derived from specialized plant metabolism continue to serve as important scaffold molecules for pharmaceutical drug producti...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2014.11.005

    authors: Yuan L,Grotewold E

    更新日期:2015-01-01 00:00:00

  • Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.

    abstract::Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caf...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.09.011

    authors: Wang J,Mahajani M,Jackson SL,Yang Y,Chen M,Ferreira EM,Lin Y,Yan Y

    更新日期:2017-11-01 00:00:00

  • A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    abstract::Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.010

    authors: Formighieri C,Melis A

    更新日期:2015-11-01 00:00:00

  • Parallel capillary electrophoresis for the quantitative screening of fermentation broths containing natural products.

    abstract::Directed molecular evolution is a recursive process of controlled genetic diversification and functional screening. The success of this approach is dependent on both the quality of the genetic diversity and the ability to accurately screen a large population of individual genetic variants for those having improved fun...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.09.001

    authors: Kittell J,Borup B,Voladari R,Zahn K

    更新日期:2005-01-01 00:00:00