A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

Abstract:

:A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information exchange between different users is thus considerably simplified. For a given model, the program can then be used to predict all the extreme point flux distributions that optimize an objective function while satisfying balances and constraints by using a depth-first search strategy. One can also find the minimum reaction set that satisfies different conditions. Based on the identified flux distributions or linear combinations, the user can simulate the NMR and GC/MS spectra of selected signal molecules. Alternately, spectra vectorization allows for the automated optimization of labeling experiments that are intended to distinguish between different, yet plausible flux extreme point distributions. The example provided entails predicting the flux distributions associated with deleting pyruvate kinase and designing 13C NMR experiments that can maximally discriminate between the flux distributions.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

doi

10.1016/s1096-7176(03)00023-5

subject

Has Abstract

pub_date

2003-04-01 00:00:00

pages

74-85

issue

2

eissn

1096-7176

issn

1096-7184

pii

S1096717603000235

journal_volume

5

pub_type

杂志文章
  • Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions.

    abstract::Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pse...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.03.003

    authors: Taymaz-Nikerel H,van Gulik WM,Heijnen JJ

    更新日期:2011-05-01 00:00:00

  • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.

    abstract::Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.10.011

    authors: Johnson AO,Gonzalez-Villanueva M,Wong L,Steinbüchel A,Tee KL,Xu P,Wong TS

    更新日期:2017-11-01 00:00:00

  • Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    abstract::Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characte...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.07.001

    authors: Curran KA,Karim AS,Gupta A,Alper HS

    更新日期:2013-09-01 00:00:00

  • Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli.

    abstract::High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.04.003

    authors: Ohtake T,Pontrelli S,Laviña WA,Liao JC,Putri SP,Fukusaki E

    更新日期:2017-05-01 00:00:00

  • Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures.

    abstract::N-linked glycosylation of proteins has both functional and structural significance. Importantly, the glycan structure of a therapeutic protein influences its efficacy, pharmacokinetics, pharmacodynamics and immunogenicity. In this work, we developed glycosylation flux analysis (GFA) for predicting intracellular produc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.005

    authors: Hutter S,Villiger TK,Brühlmann D,Stettler M,Broly H,Soos M,Gunawan R

    更新日期:2017-09-01 00:00:00

  • Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    abstract::We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.07.006

    authors: Sandoval CM,Ayson M,Moss N,Lieu B,Jackson P,Gaucher SP,Horning T,Dahl RH,Denery JR,Abbott DA,Meadows AL

    更新日期:2014-09-01 00:00:00

  • Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology.

    abstract::Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of cau...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.10.008

    authors: Kelleher JK

    更新日期:2004-01-01 00:00:00

  • Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose.

    abstract::Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, overexpressing endogen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.07.001

    authors: Zhang B,Skory CD,Yang ST

    更新日期:2012-09-01 00:00:00

  • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.

    abstract::Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enable...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.06.006

    authors: Li Y,Lin Z,Huang C,Zhang Y,Wang Z,Tang YJ,Chen T,Zhao X

    更新日期:2015-09-01 00:00:00

  • High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.

    abstract::Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.011

    authors: Takpho N,Watanabe D,Takagi H

    更新日期:2018-03-01 00:00:00

  • Cell-free styrene biosynthesis at high titers.

    abstract::Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the l...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.05.009

    authors: Grubbe WS,Rasor BJ,Krüger A,Jewett MC,Karim AS

    更新日期:2020-09-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Functional genomics for the oleaginous yeast Yarrowia lipolytica.

    abstract::Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enablin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.008

    authors: Patterson K,Yu J,Landberg J,Chang I,Shavarebi F,Bilanchone V,Sandmeyer S

    更新日期:2018-07-01 00:00:00

  • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.

    abstract::Saccharomyces cerevisiae lacks the ability to ferment the pentose sugar xylose that is the second most abundant sugar in nature. Therefore two different xylose catabolic pathways have been heterologously expressed in S. cerevisiae. Whereas the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway leads to the prod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.05.005

    authors: Parachin NS,Bergdahl B,van Niel EW,Gorwa-Grauslund MF

    更新日期:2011-09-01 00:00:00

  • Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.

    abstract::A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.05.001

    authors: Park SD,Lee JY,Sim SY,Kim Y,Lee HS

    更新日期:2007-07-01 00:00:00

  • Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase.

    abstract:BACKGROUND:6-Methylsalicylic acid synthase (MSAS), a fungal polyketide synthase from Penicillium patulum, is perhaps the simplest polyketide synthase that embodies several hallmarks of this family of multifunctional enzymes--a large multidomain protein, a high degree of specificity toward acetyl-CoA and malonyl-CoA sub...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0113

    authors: Richardson MT,Pohl NL,Kealey JT,Khosla C

    更新日期:1999-04-01 00:00:00

  • Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    abstract::To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.10.002

    authors: Xue J,Niu YF,Huang T,Yang WD,Liu JS,Li HY

    更新日期:2015-01-01 00:00:00

  • Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions.

    abstract::(13)C metabolic flux analysis (MFA) has become an important and powerful tool for the quantitative analysis of metabolic networks in the framework of metabolic engineering. Isotopically instationary (13)C MFA under metabolic stationary conditions is a promising refinement of classical stationary MFA. It accounts for t...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.05.006

    authors: Nöh K,Wahl A,Wiechert W

    更新日期:2006-11-01 00:00:00

  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    abstract::Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-C...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.003

    authors: Rodriguez A,Kildegaard KR,Li M,Borodina I,Nielsen J

    更新日期:2015-09-01 00:00:00

  • Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal.

    abstract::An engineered reversal of the β-oxidation cycle (r-BOX) and the fatty acid biosynthesis (FAB) pathway are promising biological platforms for advanced fuel and chemical production in part due to their iterative nature supporting the synthesis of various chain length products. While diverging in their carbon-carbon elon...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.003

    authors: Clomburg JM,Contreras SC,Chou A,Siegel JB,Gonzalez R

    更新日期:2018-01-01 00:00:00

  • Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.

    abstract::Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.02.009

    authors: Cardenas J,Da Silva NA

    更新日期:2016-07-01 00:00:00

  • Controlling cell-free metabolism through physiochemical perturbations.

    abstract::Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of bio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.005

    authors: Karim AS,Heggestad JT,Crowe SA,Jewett MC

    更新日期:2018-01-01 00:00:00

  • Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid.

    abstract::In this study strains of Ralstonia eutropha H16 and Pseudomonas putida KT2440 were engineered which are suitable for biotechnological production of 2-methylcitric acid (2MC). Analysis of a previous mutant of R. eutropha able to accumulate 2MC recommended this strain as a candidate for fermentative production of 2MC. T...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.05.007

    authors: Ewering C,Heuser F,Benölken JK,Brämer CO,Steinbüchel A

    更新日期:2006-11-01 00:00:00

  • Genetically engineered yeasts as a new delivery vehicle of active compounds to the digestive tract: in vivo validation of the concept in the rat.

    abstract::An innovative "biodrug" concept based on oral administration of living recombinant microorganisms as a vehicle to deliver active compounds directly into the digestive tract has recently been developed. To validate this concept, we studied a recombinant Saccharomyces cerevisiae strain in order to investigate its viabil...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.01.001

    authors: Garrait G,Jarrige JF,Blanquet-Diot S,Alric M

    更新日期:2009-05-01 00:00:00

  • Impact of 'ome' analyses on inverse metabolic engineering.

    abstract::Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences and insight into their ce...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.11.005

    authors: Bro C,Nielsen J

    更新日期:2004-07-01 00:00:00

  • Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.

    abstract::Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to se...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.011

    authors: Tuyishime P,Wang Y,Fan L,Zhang Q,Li Q,Zheng P,Sun J,Ma Y

    更新日期:2018-09-01 00:00:00

  • Using biopolymer bodies for encapsulation of hydrophobic products in bacterium.

    abstract::Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.006

    authors: Liu Y,Low ZJ,Ma X,Liang H,Sinskey AJ,Stephanopoulos G,Zhou K

    更新日期:2020-09-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.

    abstract::Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and gl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.08.007

    authors: Kim HT,Khang TU,Baritugo KA,Hyun SM,Kang KH,Jung SH,Song BK,Park K,Oh MK,Kim GB,Kim HU,Lee SY,Park SJ,Joo JC

    更新日期:2019-01-01 00:00:00

  • Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    abstract::We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.009

    authors: Cordova LT,Long CP,Venkataramanan KP,Antoniewicz MR

    更新日期:2015-11-01 00:00:00

  • Quantitative prediction of genome-wide resource allocation in bacteria.

    abstract::Predicting resource allocation between cell processes is the primary step towards decoding the evolutionary constraints governing bacterial growth under various conditions. Quantitative prediction at genome-scale remains a computational challenge as current methods are limited by the tractability of the problem or by ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.10.003

    authors: Goelzer A,Muntel J,Chubukov V,Jules M,Prestel E,Nölker R,Mariadassou M,Aymerich S,Hecker M,Noirot P,Becher D,Fromion V

    更新日期:2015-11-01 00:00:00