Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid.

Abstract:

:In this study strains of Ralstonia eutropha H16 and Pseudomonas putida KT2440 were engineered which are suitable for biotechnological production of 2-methylcitric acid (2MC). Analysis of a previous mutant of R. eutropha able to accumulate 2MC recommended this strain as a candidate for fermentative production of 2MC. This knowledge was used for construction of strains of R. eutropha H16 and P. putida KT2440 capable of enhanced production of 2MC. In both bacteria the chromosomal genes encoding the 2-methyl-cis-aconitate hydratase (acnM) were disrupted by directed insertion of a copy of an additional 2-methylcitrate synthase gene (prpC) yielding strains R. eutropha DeltaacnM(Re)OmegaKmprpC(Pp) and P. putida DeltaacnM(Pp)OmegaKmprpC(Re). In both strains 2-methylcitrate synthase was expressed under control of the constitutive kanamycin-resistance gene (OmegaKm) resulting in up to 20-fold higher specific 2-methylcitrate synthase activities in comparison to the wild type. The disruption of the acnM gene by insertion of prpC led to a propionate- and levulinate-negative phenotype of the engineered strains, and analysis of supernatant of these strains revealed overproduction and accumulation of 2MC in the medium. A two stage cultivation regime comprising an exponential growth phase and a 2MC production phase was developed and applied to both engineered strains for optimum production of 2MC. Whereas gluconate, fructose or succinate were provided as carbon source for the exponential growth phase, a combination of propionate or levulinate as precursor substrate for provision of propionyl-CoA and succinate or fumarate as precursor substrate for provision of oxaloacetate were used in the production phase to make sure that the 2-methylcitrate synthase was provided with their substrates. Employing the optimised feeding regime P. putida DeltaacnM(Pp)OmegaKmprpC(Re) and R. eutropha DeltaacnM(Re)OmegaKmprpC(Pp) produced 2MC up to maximal concentrations of 7.2 g/L or 26.5 mM and 19.2 g/L or 70.5 mM, respectively, during 144 h of cultivation.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Ewering C,Heuser F,Benölken JK,Brämer CO,Steinbüchel A

doi

10.1016/j.ymben.2006.05.007

subject

Has Abstract

pub_date

2006-11-01 00:00:00

pages

587-602

issue

6

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(06)00047-4

journal_volume

8

pub_type

杂志文章
  • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    abstract::Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-gui...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.09.006

    authors: Li H,Shen CR,Huang CH,Sung LY,Wu MY,Hu YC

    更新日期:2016-11-01 00:00:00

  • Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.

    abstract::Current studies on microbial isoprene biosynthesis have mostly focused on regulation of the upstream mevalonic acid (MVA) or methyl-erythritol-4-phosphate (MEP) pathway. However, the downstream bottleneck restricting isoprene biosynthesis capacity caused by the weak expression and low activity of plant isoprene syntha...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.011

    authors: Wang F,Lv X,Xie W,Zhou P,Zhu Y,Yao Z,Yang C,Yang X,Ye L,Yu H

    更新日期:2017-01-01 00:00:00

  • Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway.

    abstract::An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of so...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.02.006

    authors: Yang Y,Lang N,Yang G,Yang S,Jiang W,Gu Y

    更新日期:2016-05-01 00:00:00

  • 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling.

    abstract::13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Her...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.06.007

    authors: Long CP,Au J,Gonzalez JE,Antoniewicz MR

    更新日期:2016-11-01 00:00:00

  • Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum.

    abstract::The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different control...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0129

    authors: Lapujade P,Goergen JL,Engasser JM

    更新日期:1999-07-01 00:00:00

  • Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

    abstract::Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constrain...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.004

    authors: Geertman JM,van Maris AJ,van Dijken JP,Pronk JT

    更新日期:2006-11-01 00:00:00

  • Metabolic engineering of fatty acid biosynthesis in plants.

    abstract::Fatty acids are the most abundant form of reduced carbon chains available from nature and have diverse uses ranging from food to industrial feedstocks. Plants represent a significant renewable source of fatty acids because many species accumulate them in the form of triacylglycerol as major storage components in seeds...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2001.0204

    authors: Thelen JJ,Ohlrogge JB

    更新日期:2002-01-01 00:00:00

  • Application of 2D-TOCSY NMR to the measurement of specific(13C-enrichments in complex mixtures of 13C-labeled metabolites.

    abstract::A 2D-NMR method based on zero-quantum filtered (ZQF-) TOtal Correlation SpectroscopY (TOCSY) was applied to measure 13C-enrichments in complex mixtures of 13C-labeled metabolites generated in carbon-labeling experiments. Using ZQF-TOCSY, more than 30 13C-enrichments could be potentially measured from the analysis of a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.03.001

    authors: Massou S,Nicolas C,Letisse F,Portais JC

    更新日期:2007-05-01 00:00:00

  • A dynamic metabolite valve for the control of central carbon metabolism.

    abstract::Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.08.006

    authors: Solomon KV,Sanders TM,Prather KL

    更新日期:2012-11-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Engineering of new-to-nature halogenated indigo precursors in plants.

    abstract::Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite cha...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.003

    authors: Fräbel S,Wagner B,Krischke M,Schmidts V,Thiele CM,Staniek A,Warzecha H

    更新日期:2018-03-01 00:00:00

  • Geobacter sulfurreducens strain engineered for increased rates of respiration.

    abstract::Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these proces...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.06.005

    authors: Izallalen M,Mahadevan R,Burgard A,Postier B,Didonato R Jr,Sun J,Schilling CH,Lovley DR

    更新日期:2008-09-01 00:00:00

  • Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli.

    abstract::The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology acc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.09.003

    authors: Lim JH,Seo SW,Kim SY,Jung GY

    更新日期:2013-11-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00

  • Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.

    abstract::The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.10.003

    authors: Lin H,Bennett GN,San KY

    更新日期:2005-03-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants.

    abstract::An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid me...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.03.001

    authors: Ruiz-Lopez N,Haslam RP,Usher SL,Napier JA,Sayanova O

    更新日期:2013-05-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • Genetically engineered yeasts as a new delivery vehicle of active compounds to the digestive tract: in vivo validation of the concept in the rat.

    abstract::An innovative "biodrug" concept based on oral administration of living recombinant microorganisms as a vehicle to deliver active compounds directly into the digestive tract has recently been developed. To validate this concept, we studied a recombinant Saccharomyces cerevisiae strain in order to investigate its viabil...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.01.001

    authors: Garrait G,Jarrige JF,Blanquet-Diot S,Alric M

    更新日期:2009-05-01 00:00:00

  • Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    abstract::We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.07.006

    authors: Sandoval CM,Ayson M,Moss N,Lieu B,Jackson P,Gaucher SP,Horning T,Dahl RH,Denery JR,Abbott DA,Meadows AL

    更新日期:2014-09-01 00:00:00

  • Controlling cell-free metabolism through physiochemical perturbations.

    abstract::Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of bio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.005

    authors: Karim AS,Heggestad JT,Crowe SA,Jewett MC

    更新日期:2018-01-01 00:00:00

  • Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    abstract::To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.10.002

    authors: Xue J,Niu YF,Huang T,Yang WD,Liu JS,Li HY

    更新日期:2015-01-01 00:00:00

  • Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli.

    abstract::We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.005

    authors: Li S,Ye Z,Moreb EA,Hennigan JN,Castellanos DB,Yang T,Lynch MD

    更新日期:2021-01-16 00:00:00

  • Cell-free styrene biosynthesis at high titers.

    abstract::Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the l...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.05.009

    authors: Grubbe WS,Rasor BJ,Krüger A,Jewett MC,Karim AS

    更新日期:2020-09-01 00:00:00

  • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    abstract::Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.06.006

    authors: Lee Y,Lafontaine Rivera JG,Liao JC

    更新日期:2014-09-01 00:00:00

  • Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1.

    abstract::Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.008

    authors: Qiao K,Chooi YH,Tang Y

    更新日期:2011-11-01 00:00:00

  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.

    abstract::Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and car...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.009

    authors: Ma T,Shi B,Ye Z,Li X,Liu M,Chen Y,Xia J,Nielsen J,Deng Z,Liu T

    更新日期:2019-03-01 00:00:00

  • Metabolic engineering of isoprenoids.

    abstract::The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further inve...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2000.0168

    authors: Barkovich R,Liao JC

    更新日期:2001-01-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    abstract::Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.016

    authors: Kim T,Folcher M,Charpin-El Hamri G,Fussenegger M

    更新日期:2015-05-01 00:00:00