Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

Abstract:

:Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol.(molglucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Geertman JM,van Maris AJ,van Dijken JP,Pronk JT

doi

10.1016/j.ymben.2006.06.004

subject

Has Abstract

pub_date

2006-11-01 00:00:00

pages

532-42

issue

6

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(06)00061-9

journal_volume

8

pub_type

杂志文章
  • Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis.

    abstract::Selective estrogen receptor (ER) modulators are highly successful breast cancer therapies, but they are not effective in patients with ER negative and selective estrogen receptor modulator (SERM)-resistant tumors. Understanding the mechanisms of estrogen-stimulated proliferation may provide a route to design estrogen-...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.005

    authors: Forbes NS,Meadows AL,Clark DS,Blanch HW

    更新日期:2006-11-01 00:00:00

  • Review of methods to probe single cell metabolism and bioenergetics.

    abstract::Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2014.09.007

    authors: Vasdekis AE,Stephanopoulos G

    更新日期:2015-01-01 00:00:00

  • 13C metabolic flux analysis at a genome-scale.

    abstract::Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on pr...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.006

    authors: Gopalakrishnan S,Maranas CD

    更新日期:2015-11-01 00:00:00

  • Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors.

    abstract::Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function,...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.11.005

    authors: Lorendeau D,Rinaldi G,Boon R,Spincemaille P,Metzger K,Jäger C,Christen S,Dong X,Kuenen S,Voordeckers K,Verstreken P,Cassiman D,Vermeersch P,Verfaillie C,Hiller K,Fendt SM

    更新日期:2017-09-01 00:00:00

  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    abstract::Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.010

    authors: Formighieri C,Melis A

    更新日期:2015-11-01 00:00:00

  • A dynamic metabolite valve for the control of central carbon metabolism.

    abstract::Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.08.006

    authors: Solomon KV,Sanders TM,Prather KL

    更新日期:2012-11-01 00:00:00

  • Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.

    abstract::Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enz...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.03.004

    authors: Kruis AJ,Levisson M,Mars AE,van der Ploeg M,Garcés Daza F,Ellena V,Kengen SWM,van der Oost J,Weusthuis RA

    更新日期:2017-05-01 00:00:00

  • High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.

    abstract::Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metag...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.002

    authors: Ruprecht C,Bönisch F,Ilmberger N,Heyer TV,Haupt ETK,Streit WR,Rabausch U

    更新日期:2019-09-01 00:00:00

  • Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma.

    abstract::Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation redu...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(02)00011-3

    authors: Chan C,Berthiaume F,Lee K,Yarmush ML

    更新日期:2003-01-01 00:00:00

  • Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

    abstract::β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.05.004

    authors: Kallscheuer N,Polen T,Bott M,Marienhagen J

    更新日期:2017-07-01 00:00:00

  • Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

    abstract::Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-typ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.003

    authors: Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

    更新日期:2017-09-01 00:00:00

  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    abstract::5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.011

    authors: Park SJ,Kim EY,Noh W,Park HM,Oh YH,Lee SH,Song BK,Jegal J,Lee SY

    更新日期:2013-03-01 00:00:00

  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    abstract::Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-C...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.003

    authors: Rodriguez A,Kildegaard KR,Li M,Borodina I,Nielsen J

    更新日期:2015-09-01 00:00:00

  • Impact of 'ome' analyses on inverse metabolic engineering.

    abstract::Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences and insight into their ce...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.11.005

    authors: Bro C,Nielsen J

    更新日期:2004-07-01 00:00:00

  • Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue.

    abstract::The de novo synthesis of triglyceride (TG) fatty acids (FA) and glycerol can be measured with stable isotope tracers. However, these methods typically do not inform the contribution of a given substrate to specific pathways on these synthetic processes. We integrated deuterated water (2H2O) measurement of de novo lipo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.08.018

    authors: Silva JCP,Marques C,Martins FO,Viegas I,Tavares L,Macedo MP,Jones JG

    更新日期:2019-12-01 00:00:00

  • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.

    abstract::This paper presents a new mathematical framework for modeling of in vivo dynamics and for metabolic re-design: the linlog approach. This approach is an extension of metabolic control analysis (MCA), valid for large changes of enzyme and metabolite levels. Furthermore, the presented framework combines MCA with kinetic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00025-9

    authors: Visser D,Heijnen JJ

    更新日期:2003-07-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00

  • Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    abstract::We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.009

    authors: Cordova LT,Long CP,Venkataramanan KP,Antoniewicz MR

    更新日期:2015-11-01 00:00:00

  • Application of 2D-TOCSY NMR to the measurement of specific(13C-enrichments in complex mixtures of 13C-labeled metabolites.

    abstract::A 2D-NMR method based on zero-quantum filtered (ZQF-) TOtal Correlation SpectroscopY (TOCSY) was applied to measure 13C-enrichments in complex mixtures of 13C-labeled metabolites generated in carbon-labeling experiments. Using ZQF-TOCSY, more than 30 13C-enrichments could be potentially measured from the analysis of a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.03.001

    authors: Massou S,Nicolas C,Letisse F,Portais JC

    更新日期:2007-05-01 00:00:00

  • Metabolic fluxes and metabolic engineering.

    abstract::Metabolic engineering is the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology. As such, metabolic engineering emphasizes metabolic pathway integration and relies on metabolic fluxes as dete...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.1998.0101

    authors: Stephanopoulos G

    更新日期:1999-01-01 00:00:00

  • High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.

    abstract::Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.011

    authors: Takpho N,Watanabe D,Takagi H

    更新日期:2018-03-01 00:00:00

  • A biosynthetic route for polysialylating proteins in Escherichia coli.

    abstract::Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in v...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.10.012

    authors: Keys TG,Wetter M,Hang I,Rutschmann C,Russo S,Mally M,Steffen M,Zuppiger M,Müller F,Schneider J,Faridmoayer A,Lin CW,Aebi M

    更新日期:2017-11-01 00:00:00

  • Metabolic engineering of tomato for high-yield production of astaxanthin.

    abstract::Dietary carotenoids have been shown to be beneficial to health by decreasing the risk of many diseases. Attempts to enhance carotenoids in food crops have been successful although higher plants appear to resist big changes of carotenoid biosynthesis by metabolic engineering. Here we report the generation of a more nut...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.02.005

    authors: Huang JC,Zhong YJ,Liu J,Sandmann G,Chen F

    更新日期:2013-05-01 00:00:00

  • Geobacter sulfurreducens strain engineered for increased rates of respiration.

    abstract::Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these proces...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.06.005

    authors: Izallalen M,Mahadevan R,Burgard A,Postier B,Didonato R Jr,Sun J,Schilling CH,Lovley DR

    更新日期:2008-09-01 00:00:00

  • Production of muconic acid in plants.

    abstract::Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.002

    authors: Eudes A,Berthomieu R,Hao Z,Zhao N,Benites VT,Baidoo EEK,Loqué D

    更新日期:2018-03-01 00:00:00

  • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.

    abstract::Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enable...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.06.006

    authors: Li Y,Lin Z,Huang C,Zhang Y,Wang Z,Tang YJ,Chen T,Zhao X

    更新日期:2015-09-01 00:00:00

  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.

    abstract::Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and car...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.009

    authors: Ma T,Shi B,Ye Z,Li X,Liu M,Chen Y,Xia J,Nielsen J,Deng Z,Liu T

    更新日期:2019-03-01 00:00:00

  • Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway.

    abstract::Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.005

    authors: Liu Q,Manzano D,Tanić N,Pesic M,Bankovic J,Pateraki I,Ricard L,Ferrer A,de Vos R,van de Krol S,Bouwmeester H

    更新日期:2014-05-01 00:00:00

  • A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.

    abstract::We present a model-based method, designated Inverse Metabolic Control Analysis (IMCA), which can be used in conjunction with classical Metabolic Control Analysis for the analysis and design of cellular metabolism. We demonstrate the capabilities of the method by first developing a comprehensively curated kinetic model...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.04.002

    authors: Savoglidis G,da Silveira Dos Santos AX,Riezman I,Angelino P,Riezman H,Hatzimanikatis V

    更新日期:2016-09-01 00:00:00