Engineering of new-to-nature halogenated indigo precursors in plants.

Abstract:

:Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Fräbel S,Wagner B,Krischke M,Schmidts V,Thiele CM,Staniek A,Warzecha H

doi

10.1016/j.ymben.2018.02.003

subject

Has Abstract

pub_date

2018-03-01 00:00:00

pages

20-27

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(17)30300-2

journal_volume

46

pub_type

杂志文章
  • Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    abstract::A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetob...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.004

    authors: Jang YS,Im JA,Choi SY,Lee JI,Lee SY

    更新日期:2014-05-01 00:00:00

  • Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    abstract::The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active sit...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.002

    authors: Ortiz-Marquez JC,Do Nascimento M,Curatti L

    更新日期:2014-05-01 00:00:00

  • Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway.

    abstract::Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.005

    authors: Liu Q,Manzano D,Tanić N,Pesic M,Bankovic J,Pateraki I,Ricard L,Ferrer A,de Vos R,van de Krol S,Bouwmeester H

    更新日期:2014-05-01 00:00:00

  • A biosynthetic route for polysialylating proteins in Escherichia coli.

    abstract::Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in v...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.10.012

    authors: Keys TG,Wetter M,Hang I,Rutschmann C,Russo S,Mally M,Steffen M,Zuppiger M,Müller F,Schneider J,Faridmoayer A,Lin CW,Aebi M

    更新日期:2017-11-01 00:00:00

  • Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis.

    abstract::Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.08.002

    authors: Young JD,Shastri AA,Stephanopoulos G,Morgan JA

    更新日期:2011-11-01 00:00:00

  • Using biopolymer bodies for encapsulation of hydrophobic products in bacterium.

    abstract::Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.006

    authors: Liu Y,Low ZJ,Ma X,Liang H,Sinskey AJ,Stephanopoulos G,Zhou K

    更新日期:2020-09-01 00:00:00

  • Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology.

    abstract::Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of cau...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.10.008

    authors: Kelleher JK

    更新日期:2004-01-01 00:00:00

  • Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.

    abstract::3-Ketosteroid-△(1)-dehydrogenase (KstD) is a key enzyme involved in the microbial catabolism of sterols. Here, three homologues of KstD were characterized from Mycobacterium neoaurum ATCC 25795, showing distinct substrate preferences and transcriptional responses to steroids. Single deletion of any MN-kstD failed to r...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.05.005

    authors: Yao K,Xu LQ,Wang FQ,Wei DZ

    更新日期:2014-07-01 00:00:00

  • Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors.

    abstract::Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function,...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.11.005

    authors: Lorendeau D,Rinaldi G,Boon R,Spincemaille P,Metzger K,Jäger C,Christen S,Dong X,Kuenen S,Voordeckers K,Verstreken P,Cassiman D,Vermeersch P,Verfaillie C,Hiller K,Fendt SM

    更新日期:2017-09-01 00:00:00

  • Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    abstract::Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the constructi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.002

    authors: Young EM,Zhao Z,Gielesen BEM,Wu L,Benjamin Gordon D,Roubos JA,Voigt CA

    更新日期:2018-07-01 00:00:00

  • Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose.

    abstract::Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, overexpressing endogen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.07.001

    authors: Zhang B,Skory CD,Yang ST

    更新日期:2012-09-01 00:00:00

  • 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling.

    abstract::13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Her...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.06.007

    authors: Long CP,Au J,Gonzalez JE,Antoniewicz MR

    更新日期:2016-11-01 00:00:00

  • Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    abstract::Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The enginee...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.04.010

    authors: Nguyen AD,Hwang IY,Lee OK,Kim D,Kalyuzhnaya MG,Mariyana R,Hadiyati S,Kim MS,Lee EY

    更新日期:2018-05-01 00:00:00

  • Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.

    abstract::Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enz...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.03.004

    authors: Kruis AJ,Levisson M,Mars AE,van der Ploeg M,Garcés Daza F,Ellena V,Kengen SWM,van der Oost J,Weusthuis RA

    更新日期:2017-05-01 00:00:00

  • Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants.

    abstract::As a proof of concept, the qualitative and quantitative engineering of carotenoid formation has been achieved in crop plants. Successful reports in tomato, potato, rice, and canola all describe the enhancement of carotenoid with nutritional value, while in model systems such as tobacco and Arabidopsis the engineering ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2006.01.005

    authors: Sandmann G,Römer S,Fraser PD

    更新日期:2006-07-01 00:00:00

  • Step changes in leaf oil accumulation via iterative metabolic engineering.

    abstract::Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.007

    authors: Vanhercke T,Divi UK,El Tahchy A,Liu Q,Mitchell M,Taylor MC,Eastmond PJ,Bryant F,Mechanicos A,Blundell C,Zhi Y,Belide S,Shrestha P,Zhou XR,Ral JP,White RG,Green A,Singh SP,Petrie JR

    更新日期:2017-01-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Engineering Escherichia coli to produce branched-chain fatty acids in high percentages.

    abstract::Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynth...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.07.003

    authors: Bentley GJ,Jiang W,Guamán LP,Xiao Y,Zhang F

    更新日期:2016-11-01 00:00:00

  • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.

    abstract::This paper presents a new mathematical framework for modeling of in vivo dynamics and for metabolic re-design: the linlog approach. This approach is an extension of metabolic control analysis (MCA), valid for large changes of enzyme and metabolite levels. Furthermore, the presented framework combines MCA with kinetic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00025-9

    authors: Visser D,Heijnen JJ

    更新日期:2003-07-01 00:00:00

  • Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.

    abstract::Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.012

    authors: Hirokawa Y,Kubo T,Soma Y,Saruta F,Hanai T

    更新日期:2020-01-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00

  • Dynamical analysis of gene networks requires both mRNA and protein expression information.

    abstract::One of the important goals of biology is to understand the relationship between DNA sequence information and nonlinear cellular responses. This relationship is central to the ability to effectively engineer cellular phenotypes, pathways, and characteristics. Expression arrays for monitoring total gene expression based...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0115

    authors: Hatzimanikatis V,Lee KH

    更新日期:1999-10-01 00:00:00

  • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.

    abstract::3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.01.005

    authors: Chen Y,Bao J,Kim IK,Siewers V,Nielsen J

    更新日期:2014-03-01 00:00:00

  • Metabolic fluxes and metabolic engineering.

    abstract::Metabolic engineering is the directed improvement of cellular properties through the modification of specific biochemical reactions or the introduction of new ones, with the use of recombinant DNA technology. As such, metabolic engineering emphasizes metabolic pathway integration and relies on metabolic fluxes as dete...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.1998.0101

    authors: Stephanopoulos G

    更新日期:1999-01-01 00:00:00

  • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.

    abstract::Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.10.011

    authors: Johnson AO,Gonzalez-Villanueva M,Wong L,Steinbüchel A,Tee KL,Xu P,Wong TS

    更新日期:2017-11-01 00:00:00

  • Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.

    abstract::In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 1...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.012

    authors: Lu W,Ye L,Lv X,Xie W,Gu J,Chen Z,Zhu Y,Li A,Yu H

    更新日期:2015-05-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00

  • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    abstract::Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the availabl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.01.009

    authors: Andreozzi S,Chakrabarti A,Soh KC,Burgard A,Yang TH,Van Dien S,Miskovic L,Hatzimanikatis V

    更新日期:2016-05-01 00:00:00

  • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    abstract::Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.06.006

    authors: Lee Y,Lafontaine Rivera JG,Liao JC

    更新日期:2014-09-01 00:00:00

  • A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    abstract::Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.010

    authors: Formighieri C,Melis A

    更新日期:2015-11-01 00:00:00