Engineering Escherichia coli to produce branched-chain fatty acids in high percentages.

Abstract:

:Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynthesis. Previously, Escherichia coli strains engineered for BCFA production also co-produced a large percentage of SCFA, complicating efficient isolation of BCFA. Here, we identified a key bottleneck in BCFA production: incomplete lipoylation of 2-oxoacid dehydrogenases. We engineered two protein lipoylation pathways that not only restored 2-oxoacid dehydrogenase lipoylation, but also increased BCFA production dramatically. E. coli expressing an optimized lipoylation pathway produced 276mg/L BCFA, comprising 85% of the total free fatty acids (FFAs). Furthermore, we fine-tuned BCFA branch positions, yielding strains specifically producing ante-iso or odd-chain iso BCFA as 77% of total FFA, separately. When coupled with an engineered branched-chain amino acid pathway to enrich the branched-chain α-ketoacid pool, BCFA can be produced from glucose at 181mg/L and 72% of total FFA. While E. coli can metabolize BCFAs, we demonstrated that they are not incorporated into the cell membrane, allowing our system to produce a high percentage of BCFA without affecting membrane fluidity. Overall, this work establishes a platform for high percentage BCFA production, providing the basis for efficient and specific production of a variety of branched-chain hydrocarbons in engineered bacterial hosts.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Bentley GJ,Jiang W,Guamán LP,Xiao Y,Zhang F

doi

10.1016/j.ymben.2016.07.003

subject

Has Abstract

pub_date

2016-11-01 00:00:00

pages

148-158

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(16)30056-8

journal_volume

38

pub_type

杂志文章
  • Punicic acid production in Brassica napus.

    abstract::Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.08.011

    authors: Xu Y,Mietkiewska E,Shah S,Weselake RJ,Chen G

    更新日期:2020-11-01 00:00:00

  • Metabolic engineering of isoprenoids.

    abstract::The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further inve...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2000.0168

    authors: Barkovich R,Liao JC

    更新日期:2001-01-01 00:00:00

  • A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    abstract::Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.016

    authors: Kim T,Folcher M,Charpin-El Hamri G,Fussenegger M

    更新日期:2015-05-01 00:00:00

  • Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.

    abstract::To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.01.004

    authors: Sawada K,Zen-in S,Wada M,Yokota A

    更新日期:2010-07-01 00:00:00

  • A modular autoinduction device for control of gene expression in Bacillus subtilis.

    abstract::Intense synthesis of proteins and chemicals in engineered microbes impose metabolic burden, frequently leading to reduced growth and heterogeneous cell population. Thus, the correct balance between growth and production is important. Such balance can be engineered through dynamic control of pathways, but few broadly a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.03.012

    authors: Corrêa GG,Lins MRDCR,Silva BF,de Paiva GB,Zocca VFB,Ribeiro NV,Picheli FP,Mack M,Pedrolli DB

    更新日期:2020-09-01 00:00:00

  • Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.

    abstract::Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caf...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.09.011

    authors: Wang J,Mahajani M,Jackson SL,Yang Y,Chen M,Ferreira EM,Lin Y,Yan Y

    更新日期:2017-11-01 00:00:00

  • Review of methods to probe single cell metabolism and bioenergetics.

    abstract::Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2014.09.007

    authors: Vasdekis AE,Stephanopoulos G

    更新日期:2015-01-01 00:00:00

  • Parallel capillary electrophoresis for the quantitative screening of fermentation broths containing natural products.

    abstract::Directed molecular evolution is a recursive process of controlled genetic diversification and functional screening. The success of this approach is dependent on both the quality of the genetic diversity and the ability to accurately screen a large population of individual genetic variants for those having improved fun...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.09.001

    authors: Kittell J,Borup B,Voladari R,Zahn K

    更新日期:2005-01-01 00:00:00

  • Recombinant strains for the enhanced production of bioengineered rapalogs.

    abstract::The rapK gene required for biosynthesis of the DHCHC starter acid that initiates rapamycin biosynthesis was deleted from strain BIOT-3410, a derivative of Streptomyces rapamycinicus which had been subjected to classical strain and process development and capable of robust rapamycin production at titres up to 250mg/L. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.001

    authors: Kendrew SG,Petkovic H,Gaisser S,Ready SJ,Gregory MA,Coates NJ,Nur-E-Alam M,Warneck T,Suthar D,Foster TA,McDonald L,Schlingman G,Koehn FE,Skotnicki JS,Carter GT,Moss SJ,Zhang MQ,Martin CJ,Sheridan RM,Wilkinson B

    更新日期:2013-01-01 00:00:00

  • Colored Petri net modeling and simulation of signal transduction pathways.

    abstract::Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.10.001

    authors: Lee DY,Zimmer R,Lee SY,Park S

    更新日期:2006-03-01 00:00:00

  • Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

    abstract::Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constrain...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.004

    authors: Geertman JM,van Maris AJ,van Dijken JP,Pronk JT

    更新日期:2006-11-01 00:00:00

  • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    abstract::Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.06.006

    authors: Lee Y,Lafontaine Rivera JG,Liao JC

    更新日期:2014-09-01 00:00:00

  • Step changes in leaf oil accumulation via iterative metabolic engineering.

    abstract::Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.007

    authors: Vanhercke T,Divi UK,El Tahchy A,Liu Q,Mitchell M,Taylor MC,Eastmond PJ,Bryant F,Mechanicos A,Blundell C,Zhi Y,Belide S,Shrestha P,Zhou XR,Ral JP,White RG,Green A,Singh SP,Petrie JR

    更新日期:2017-01-01 00:00:00

  • 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling.

    abstract::13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Her...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.06.007

    authors: Long CP,Au J,Gonzalez JE,Antoniewicz MR

    更新日期:2016-11-01 00:00:00

  • Biotin-independent strains of Escherichia coli for enhanced streptavidin production.

    abstract::Biotin is an archetypal vitamin used as cofactor for carboxylation reactions found in all forms of life. However, biotin biosynthesis is an elaborate multi-enzymatic process and metabolically costly. Moreover, many industrially relevant organisms are incapable of biotin synthesis resulting in the requirement to supple...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.013

    authors: Jeschek M,Bahls MO,Schneider V,Marlière P,Ward TR,Panke S

    更新日期:2017-03-01 00:00:00

  • Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum.

    abstract::Metabolic engineering technology for industrial microorganisms is under development to create rational, more reliable, and more cost-effective approaches to strain improvement. Strain improvement is a critical component of the drug development process, yet the genetic basis for high production by industrial microorgan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.03.003

    authors: Reeves AR,Cernota WH,Brikun IA,Wesley RK,Weber JM

    更新日期:2004-10-01 00:00:00

  • Controlling cell-free metabolism through physiochemical perturbations.

    abstract::Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of bio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.005

    authors: Karim AS,Heggestad JT,Crowe SA,Jewett MC

    更新日期:2018-01-01 00:00:00

  • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories.

    abstract::Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2017.10.011

    authors: Johnson AO,Gonzalez-Villanueva M,Wong L,Steinbüchel A,Tee KL,Xu P,Wong TS

    更新日期:2017-11-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.

    abstract::Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metag...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.002

    authors: Ruprecht C,Bönisch F,Ilmberger N,Heyer TV,Haupt ETK,Streit WR,Rabausch U

    更新日期:2019-09-01 00:00:00

  • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose.

    abstract::Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2002.0226

    authors: Yang C,Hua Q,Shimizu K

    更新日期:2002-07-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    abstract::This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and fi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.01.001

    authors: Priesnitz C,Niklas J,Rose T,Sandig V,Heinzle E

    更新日期:2012-03-01 00:00:00

  • Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.

    abstract::Ethyl acetate is an industrially relevant ester that is currently produced exclusively through unsustainable processes. Many yeasts are able to produce ethyl acetate, but the main responsible enzyme has remained elusive, hampering the engineering of novel production strains. Here we describe the discovery of a new enz...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.03.004

    authors: Kruis AJ,Levisson M,Mars AE,van der Ploeg M,Garcés Daza F,Ellena V,Kengen SWM,van der Oost J,Weusthuis RA

    更新日期:2017-05-01 00:00:00

  • The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose.

    abstract::A mathematical model to describe carbon catabolite repression in Escherichia coli is developed and in part validated. The model is aggregated from two functional units describing glucose and lactose transport and degradation. Both units are members of the crp modulon and are under control of a global signal transducti...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2001.0199

    authors: Kremling A,Bettenbrock K,Laube B,Jahreis K,Lengeler JW,Gilles ED

    更新日期:2001-10-01 00:00:00

  • Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    abstract::The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.04.006

    authors: Curran KA,Alper HS

    更新日期:2012-07-01 00:00:00

  • Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

    abstract::Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.007

    authors: Nduko JM,Matsumoto K,Ooi T,Taguchi S

    更新日期:2013-01-01 00:00:00

  • A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine.

    abstract::The biosynthesis of non-ribosomal peptides, many of which have pharmaceutical activities, is an evolutionary privilege of microorganisms. Capitalizing on the universal set of the Streptomyces lavendulae non-ribosomal peptide synthase BpsA and the Streptomyces verticillus 4'-phosphopantetheinyl transferase Svp, we have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.04.002

    authors: Müller M,Ausländer S,Ausländer D,Kemmer C,Fussenegger M

    更新日期:2012-07-01 00:00:00

  • In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products.

    abstract::The modularity and versatility of an engineered functional reversal of the β-oxidation cycle make it a promising platform for the synthesis of longer-chain (C≥4) products. While the pathway has recently been exploited for the production of n-alcohols and carboxylic acids, fully capitalizing on its potential for the sy...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.02.011

    authors: Cintolesi A,Clomburg JM,Gonzalez R

    更新日期:2014-05-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00