Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

Abstract:

:Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having a higher LA fraction (34mol%) than that grown on glucose (26mol%). This benefit of xylose was further enhanced by combining it with an evolved LPE (ST/FS/QK), achieving a copolymer production having 60mol% LA from xylose, while glucose gave a 47mol% LA under the same condition. The overall carbon yields from the sugars to the polymer were similar for xylose and glucose, but the ratio of the LA and 3HB units in the copolymer was different. Notably, the P(LA-co-3HB) yield from xylose (7.3gl(-1)) was remarkably higher than that of P(3HB) (4.1gl(-1)), indicating P(LA-co-3HB) as a potent target for xylose utilization.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Nduko JM,Matsumoto K,Ooi T,Taguchi S

doi

10.1016/j.ymben.2012.11.007

subject

Has Abstract

pub_date

2013-01-01 00:00:00

pages

159-66

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(12)00124-3

journal_volume

15

pub_type

杂志文章
  • Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway.

    abstract::An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of so...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.02.006

    authors: Yang Y,Lang N,Yang G,Yang S,Jiang W,Gu Y

    更新日期:2016-05-01 00:00:00

  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.

    abstract::In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 1...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.012

    authors: Lu W,Ye L,Lv X,Xie W,Gu J,Chen Z,Zhu Y,Li A,Yu H

    更新日期:2015-05-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.

    abstract::Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and gl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.08.007

    authors: Kim HT,Khang TU,Baritugo KA,Hyun SM,Kang KH,Jung SH,Song BK,Park K,Oh MK,Kim GB,Kim HU,Lee SY,Park SJ,Joo JC

    更新日期:2019-01-01 00:00:00

  • Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

    abstract::Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-typ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.003

    authors: Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

    更新日期:2017-09-01 00:00:00

  • Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp.

    abstract::Two types of non-homologous beta-carotene ketolases (CrtW and CrtO) were previously described. We report improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in a methylotrophic bacterium, Methylomonas sp. 16a, which could use the C1 substrate (methane or methanol) as sole carbon and energ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.05.004

    authors: Tang XS,Shyr J,Tao L,Sedkova N,Cheng Q

    更新日期:2007-07-01 00:00:00

  • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    abstract::Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.06.006

    authors: Lee Y,Lafontaine Rivera JG,Liao JC

    更新日期:2014-09-01 00:00:00

  • CRISPR/Cas9 advances engineering of microbial cell factories.

    abstract::One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2015.12.003

    authors: Jakočiūnas T,Jensen MK,Keasling JD

    更新日期:2016-03-01 00:00:00

  • Overproduction of free fatty acids in E. coli: implications for biodiesel production.

    abstract::Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.08.006

    authors: Lu X,Vora H,Khosla C

    更新日期:2008-11-01 00:00:00

  • Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions.

    abstract::Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pse...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.03.003

    authors: Taymaz-Nikerel H,van Gulik WM,Heijnen JJ

    更新日期:2011-05-01 00:00:00

  • Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.

    abstract::To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.01.004

    authors: Sawada K,Zen-in S,Wada M,Yokota A

    更新日期:2010-07-01 00:00:00

  • Using biopolymer bodies for encapsulation of hydrophobic products in bacterium.

    abstract::Producing some small hydrophobic molecules in microbes is challenging. Often these molecules cannot cross membranes, and thus their production may be limited by lack of storage space in the producing organism. This study reports a new technology for in vivo storage of valuable hydrophobic products in/on biopolymer bod...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.006

    authors: Liu Y,Low ZJ,Ma X,Liang H,Sinskey AJ,Stephanopoulos G,Zhou K

    更新日期:2020-09-01 00:00:00

  • Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.

    abstract::The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.10.003

    authors: Lin H,Bennett GN,San KY

    更新日期:2005-03-01 00:00:00

  • Dynamical analysis of gene networks requires both mRNA and protein expression information.

    abstract::One of the important goals of biology is to understand the relationship between DNA sequence information and nonlinear cellular responses. This relationship is central to the ability to effectively engineer cellular phenotypes, pathways, and characteristics. Expression arrays for monitoring total gene expression based...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0115

    authors: Hatzimanikatis V,Lee KH

    更新日期:1999-10-01 00:00:00

  • Generation of serum-stabilized retroviruses: reduction of alpha1,3gal-epitope synthesis in a murine NIH3T3-derived packaging cell line by expression of chimeric glycosyltransferases.

    abstract::Retroviral vectors released from mouse-derived packaging cell lines are inactivated in human sera by naturally occurring antibodies due to the recognition of Galalpha1,3Galbeta1,4GlcNAc (alphagal-epitope) decorated surface proteins. In this study, an extensive analysis of the glycosylation potential of NIH3T3-derived ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.02.004

    authors: Hansen W,Grabenhorst E,Nimtz M,Müller K,Conradt HS,Wirth M

    更新日期:2005-05-01 00:00:00

  • Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    abstract::Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, b...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.02.004

    authors: Veiga T,Gombert AK,Landes N,Verhoeven MD,Kiel JA,Krikken AM,Nijland JG,Touw H,Luttik MA,van der Toorn JC,Driessen AJ,Bovenberg RA,van den Berg MA,van der Klei IJ,Pronk JT,Daran JM

    更新日期:2012-07-01 00:00:00

  • Methods and applications for assembling large DNA constructs.

    abstract::The construction of large DNA molecules that encode pathways, biological machinery, and entire genomes has been limited to the reproduction of natural sequences. However, now that robust methods for assembling hundreds of DNA fragments into constructs > 20 kb are readily available, optimization of large genetic elemen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.02.005

    authors: Merryman C,Gibson DG

    更新日期:2012-05-01 00:00:00

  • Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).

    abstract::Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for pro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.03.006

    authors: Chen Y,Chen XY,Du HT,Zhang X,Ma YM,Chen JC,Ye JW,Jiang XR,Chen GQ

    更新日期:2019-07-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    abstract::Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the constructi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.002

    authors: Young EM,Zhao Z,Gielesen BEM,Wu L,Benjamin Gordon D,Roubos JA,Voigt CA

    更新日期:2018-07-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.

    abstract::Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.011

    authors: Takpho N,Watanabe D,Takagi H

    更新日期:2018-03-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose.

    abstract::Development of sustainable biological process for the production of bulk chemicals from renewable feedstock is an important goal of white biotechnology. Ethylene glycol (EG) is a large-volume commodity chemical with an annual production of over 20 million tons, and it is currently produced exclusively by petrochemical...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.10.013

    authors: Chen Z,Huang J,Wu Y,Liu D

    更新日期:2016-01-01 00:00:00

  • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    abstract::Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endog...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.03.007

    authors: Zhang J,Zong W,Hong W,Zhang ZT,Wang Y

    更新日期:2018-05-01 00:00:00

  • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    abstract::Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-gui...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.09.006

    authors: Li H,Shen CR,Huang CH,Sung LY,Wu MY,Hu YC

    更新日期:2016-11-01 00:00:00

  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    abstract::5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.011

    authors: Park SJ,Kim EY,Noh W,Park HM,Oh YH,Lee SH,Song BK,Jegal J,Lee SY

    更新日期:2013-03-01 00:00:00

  • Metabolic engineering of isoprenoids.

    abstract::The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further inve...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2000.0168

    authors: Barkovich R,Liao JC

    更新日期:2001-01-01 00:00:00

  • Induction of a hypermetabolic state in cultured hepatocytes by glucagon and H2O2.

    abstract::Stress hormones and pro-inflammatory cytokines are putative signals triggering increased energy expenditure or "hypermetabolism" commonly observed in inflammatory states. Cytokines also cause the release of reactive oxidants by immune cells resident in tissues in vivo. Therefore, we hypothesized that oxidative stress ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00042-9

    authors: Lee K,Berthiaume F,Stephanopoulos GN,Yarmush ML

    更新日期:2003-10-01 00:00:00

  • Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    abstract::The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.001

    authors: Hirokawa Y,Maki Y,Hanai T

    更新日期:2017-01-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00