Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

Abstract:

:To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast without affecting its desirable fermentation properties including high osmotic and ethanol tolerance, natural robustness in industrial processes. In the present study, the GPD1 gene, encoding NAD+-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol producing strain of S. cerevisiae, was deleted. Simultaneously, a non-phosphorylating NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus was expressed in the mutant deletion of GPD1. Although the resultant strain AG1A (gpd1△ P(PGK)-gapN) exhibited a 48.7±0.3% (relative to the amount of substrate consumed) lower glycerol yield and a 7.6±0.1% (relative to the amount of substrate consumed) higher ethanol yield compared to the wild-type strain, it was sensitive to osmotic stress and failed to ferment on 25% glucose. However, when trehalose synthesis genes TPS1 and TPS2 were over-expressed in the above recombinant strain AG1A, its high osmotic stress tolerance was not only restored but also improved. In addition, this new recombinant yeast strain displayed further reduced glycerol yield, indistinguishable maximum specific growth rate (μ(max)) and fermentation ability compared to the wild type in anaerobic batch fermentations. This study provides a promising strategy to improve ethanol yields by minimization of glycerol production.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Guo ZP,Zhang L,Ding ZY,Shi GY

doi

10.1016/j.ymben.2010.11.003

subject

Has Abstract

pub_date

2011-01-01 00:00:00

pages

49-59

issue

1

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(10)00101-1

journal_volume

13

pub_type

杂志文章
  • Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    abstract::Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.12.005

    authors: Li S,Xu N,Liu L,Chen J

    更新日期:2014-03-01 00:00:00

  • Human 293 cell metabolism in low glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis.

    abstract::Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a f...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2000.0152

    authors: Nadeau I,Sabatié J,Koehl M,Perrier M,Kamen A

    更新日期:2000-10-01 00:00:00

  • RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin.

    abstract::A large number of CHO glycosylation mutants were isolated by Ricinus communis agglutinin-I (RCA-I). Complementation tests revealed that all these mutant lines possessed a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. Sequencing analyses on the GnT I cDNAs isolated from 16 mutant lines led to the identi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.03.002

    authors: Goh JS,Zhang P,Chan KF,Lee MM,Lim SF,Song Z

    更新日期:2010-07-01 00:00:00

  • Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    abstract::To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.10.002

    authors: Xue J,Niu YF,Huang T,Yang WD,Liu JS,Li HY

    更新日期:2015-01-01 00:00:00

  • High-yield whole cell biosynthesis of Nylon 12 monomer with self-sufficient supply of multiple cofactors.

    abstract::Biosynthesis of Nylon 12 monomer using dodecanoic acid (DDA) or its esters as the renewable feedstock typically involves ω-hydroxylation, oxidation and ω-amination. The dependence of hydroxylation and oxidation-catalyzing enzymes on redox cofactors, and the requirement of L-alanine as the co-substrate and pyridoxal 5'...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.09.006

    authors: Ge J,Yang X,Yu H,Ye L

    更新日期:2020-11-01 00:00:00

  • Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp.

    abstract::Two types of non-homologous beta-carotene ketolases (CrtW and CrtO) were previously described. We report improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in a methylotrophic bacterium, Methylomonas sp. 16a, which could use the C1 substrate (methane or methanol) as sole carbon and energ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.05.004

    authors: Tang XS,Shyr J,Tao L,Sedkova N,Cheng Q

    更新日期:2007-07-01 00:00:00

  • Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.

    abstract::Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and gl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.08.007

    authors: Kim HT,Khang TU,Baritugo KA,Hyun SM,Kang KH,Jung SH,Song BK,Park K,Oh MK,Kim GB,Kim HU,Lee SY,Park SJ,Joo JC

    更新日期:2019-01-01 00:00:00

  • Controlling cell-free metabolism through physiochemical perturbations.

    abstract::Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of bio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.005

    authors: Karim AS,Heggestad JT,Crowe SA,Jewett MC

    更新日期:2018-01-01 00:00:00

  • Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.

    abstract::Natural products are a rich source of potential drugs for many applications. Discovery of natural products through the activation of cryptic gene clusters encoding their biosynthetic pathways, engineering of those biosynthetic pathways and optimization of production yields often rely on the expression of these gene cl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.004

    authors: Myronovskyi M,Rosenkränzer B,Nadmid S,Pujic P,Normand P,Luzhetskyy A

    更新日期:2018-09-01 00:00:00

  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    abstract::Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-C...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.003

    authors: Rodriguez A,Kildegaard KR,Li M,Borodina I,Nielsen J

    更新日期:2015-09-01 00:00:00

  • Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli.

    abstract::Numerous value-added chemicals can be produced using xylan as a feedstock. However, the product yields are limited by low xylan utilization efficiency, as well as by carbon flux competition between biomass production and biosynthesis. Herein, a dynamic consolidated bioprocessing strategy was developed, which coupled x...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.001

    authors: Gao C,Guo L,Ding Q,Hu G,Ye C,Liu J,Chen X,Liu L

    更新日期:2020-07-01 00:00:00

  • A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

    abstract::A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00023-5

    authors: Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

    更新日期:2003-04-01 00:00:00

  • A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing.

    abstract::We generated a genomic library from sheared Clostridium acetobutylicum ATCC 824 DNA, whereby inserts can be expressed in both directions from the thiolase promoter, P(thl). Serial transfer of library-bearing C. acetobutylicum cultures exposed to increasing butyrate concentrations enriched for inserts containing fragme...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.12.004

    authors: Borden JR,Jones SW,Indurthi D,Chen Y,Papoutsakis ET

    更新日期:2010-05-01 00:00:00

  • Methods and applications for assembling large DNA constructs.

    abstract::The construction of large DNA molecules that encode pathways, biological machinery, and entire genomes has been limited to the reproduction of natural sequences. However, now that robust methods for assembling hundreds of DNA fragments into constructs > 20 kb are readily available, optimization of large genetic elemen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.02.005

    authors: Merryman C,Gibson DG

    更新日期:2012-05-01 00:00:00

  • Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid.

    abstract::In this study strains of Ralstonia eutropha H16 and Pseudomonas putida KT2440 were engineered which are suitable for biotechnological production of 2-methylcitric acid (2MC). Analysis of a previous mutant of R. eutropha able to accumulate 2MC recommended this strain as a candidate for fermentative production of 2MC. T...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.05.007

    authors: Ewering C,Heuser F,Benölken JK,Brämer CO,Steinbüchel A

    更新日期:2006-11-01 00:00:00

  • Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase.

    abstract:BACKGROUND:6-Methylsalicylic acid synthase (MSAS), a fungal polyketide synthase from Penicillium patulum, is perhaps the simplest polyketide synthase that embodies several hallmarks of this family of multifunctional enzymes--a large multidomain protein, a high degree of specificity toward acetyl-CoA and malonyl-CoA sub...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0113

    authors: Richardson MT,Pohl NL,Kealey JT,Khosla C

    更新日期:1999-04-01 00:00:00

  • Engineering Saccharomyces cerevisiae for production of simvastatin.

    abstract::Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvasta...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.09.005

    authors: Bond CM,Tang Y

    更新日期:2019-01-01 00:00:00

  • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae.

    abstract::One of the challenges in strain improvement by evolutionary engineering is to subsequently determine the molecular basis of the improved properties that were enriched from the natural genetic variation during the selective conditions. This study focuses on Saccharomyces cerevisiae IMS0002 which, after metabolic and ev...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.08.003

    authors: Wisselink HW,Cipollina C,Oud B,Crimi B,Heijnen JJ,Pronk JT,van Maris AJ

    更新日期:2010-11-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose.

    abstract::Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2002.0226

    authors: Yang C,Hua Q,Shimizu K

    更新日期:2002-07-01 00:00:00

  • Characterizing metabolic pathway diversification in the context of perturbation size.

    abstract::Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.11.013

    authors: Yang L,Srinivasan S,Mahadevan R,Cluett WR

    更新日期:2015-03-01 00:00:00

  • Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    abstract::Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characte...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.07.001

    authors: Curran KA,Karim AS,Gupta A,Alper HS

    更新日期:2013-09-01 00:00:00

  • In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products.

    abstract::The modularity and versatility of an engineered functional reversal of the β-oxidation cycle make it a promising platform for the synthesis of longer-chain (C≥4) products. While the pathway has recently been exploited for the production of n-alcohols and carboxylic acids, fully capitalizing on its potential for the sy...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.02.011

    authors: Cintolesi A,Clomburg JM,Gonzalez R

    更新日期:2014-05-01 00:00:00

  • Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.

    abstract::Caffeic acid has been widely recognized as a versatile pharmacophore for synthesis of new chemical entities, among which caffeic acid derived phenethyl esters and amides are the most extensively-investigated bioactive compounds with potential therapeutical applications. However, the natural biosynthetic routes for caf...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.09.011

    authors: Wang J,Mahajani M,Jackson SL,Yang Y,Chen M,Ferreira EM,Lin Y,Yan Y

    更新日期:2017-11-01 00:00:00

  • Review of methods to probe single cell metabolism and bioenergetics.

    abstract::Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2014.09.007

    authors: Vasdekis AE,Stephanopoulos G

    更新日期:2015-01-01 00:00:00

  • Colored Petri net modeling and simulation of signal transduction pathways.

    abstract::Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.10.001

    authors: Lee DY,Zimmer R,Lee SY,Park S

    更新日期:2006-03-01 00:00:00

  • A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine.

    abstract::The biosynthesis of non-ribosomal peptides, many of which have pharmaceutical activities, is an evolutionary privilege of microorganisms. Capitalizing on the universal set of the Streptomyces lavendulae non-ribosomal peptide synthase BpsA and the Streptomyces verticillus 4'-phosphopantetheinyl transferase Svp, we have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.04.002

    authors: Müller M,Ausländer S,Ausländer D,Kemmer C,Fussenegger M

    更新日期:2012-07-01 00:00:00

  • Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    abstract::Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, b...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.02.004

    authors: Veiga T,Gombert AK,Landes N,Verhoeven MD,Kiel JA,Krikken AM,Nijland JG,Touw H,Luttik MA,van der Toorn JC,Driessen AJ,Bovenberg RA,van den Berg MA,van der Klei IJ,Pronk JT,Daran JM

    更新日期:2012-07-01 00:00:00

  • An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica.

    abstract::Lipogenic organisms provide an ideal platform for biodiesel and oleochemical production. Through our previous rational metabolic engineering efforts, lipogenesis titers in Yarrowia lipolytica were significantly enhanced. However, the resulting strain still suffered from decreased biomass generation rates. Here, we emp...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.02.003

    authors: Liu L,Pan A,Spofford C,Zhou N,Alper HS

    更新日期:2015-05-01 00:00:00

  • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways.

    abstract::Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.06.006

    authors: Lee Y,Lafontaine Rivera JG,Liao JC

    更新日期:2014-09-01 00:00:00