Improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in Methylomonas sp.

Abstract:

:Two types of non-homologous beta-carotene ketolases (CrtW and CrtO) were previously described. We report improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in a methylotrophic bacterium, Methylomonas sp. 16a, which could use the C1 substrate (methane or methanol) as sole carbon and energy source. The crtO gene from Rhodococcus erythropolis was improved for canthaxanthin production in an E. coli strain engineered to produce high titer carotenoids by error-prone PCR mutagenesis followed by in vitro recombination. The best mutants from protein engineering could produce approximately 90% of total carotenoids as canthaxanthin in the high titer E. coli strain compared to approximately 20% canthaxanthin produced by the starting gene. Canthaxanthin production in Methylomonas was also significantly improved to approximately 50% of total carotenoids by the mutant genes. Further improvement of canthaxanthin production to approximately 93% in Methylomonas was achieved by increased expression of the best mutant gene. Some mutations were found in many of the improved genes, suggesting that these sites, and possibly the regions around these sites, were important for improving the crtO's activity for canthaxanthin production.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Tang XS,Shyr J,Tao L,Sedkova N,Cheng Q

doi

10.1016/j.ymben.2007.05.004

subject

Has Abstract

pub_date

2007-07-01 00:00:00

pages

348-54

issue

4

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(07)00027-4

journal_volume

9

pub_type

杂志文章
  • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose.

    abstract::Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2002.0226

    authors: Yang C,Hua Q,Shimizu K

    更新日期:2002-07-01 00:00:00

  • Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

    abstract::Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-typ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.003

    authors: Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

    更新日期:2017-09-01 00:00:00

  • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae.

    abstract::One of the challenges in strain improvement by evolutionary engineering is to subsequently determine the molecular basis of the improved properties that were enriched from the natural genetic variation during the selective conditions. This study focuses on Saccharomyces cerevisiae IMS0002 which, after metabolic and ev...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.08.003

    authors: Wisselink HW,Cipollina C,Oud B,Crimi B,Heijnen JJ,Pronk JT,van Maris AJ

    更新日期:2010-11-01 00:00:00

  • Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology.

    abstract::Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of cau...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.10.008

    authors: Kelleher JK

    更新日期:2004-01-01 00:00:00

  • Metabolic engineering of E. coli for pyocyanin production.

    abstract::Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.002

    authors: da Silva AJ,Cunha JS,Hreha T,Micocci KC,Selistre-de-Araujo HS,Barquera B,Koffas MAG

    更新日期:2021-01-14 00:00:00

  • Overproduction of free fatty acids in E. coli: implications for biodiesel production.

    abstract::Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.08.006

    authors: Lu X,Vora H,Khosla C

    更新日期:2008-11-01 00:00:00

  • Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma.

    abstract::Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation redu...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(02)00011-3

    authors: Chan C,Berthiaume F,Lee K,Yarmush ML

    更新日期:2003-01-01 00:00:00

  • Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.

    abstract::A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.003

    authors: Kim CL,Lee GM

    更新日期:2019-03-01 00:00:00

  • Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum.

    abstract::The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different control...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0129

    authors: Lapujade P,Goergen JL,Engasser JM

    更新日期:1999-07-01 00:00:00

  • Streptomyces species: Ideal chassis for natural product discovery and overproduction.

    abstract::There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2018.05.015

    authors: Liu R,Deng Z,Liu T

    更新日期:2018-11-01 00:00:00

  • Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.

    abstract::Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.006

    authors: Tovilla-Coutiño DB,Momany C,Eiteman MA

    更新日期:2020-09-01 00:00:00

  • Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors.

    abstract::Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function,...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.11.005

    authors: Lorendeau D,Rinaldi G,Boon R,Spincemaille P,Metzger K,Jäger C,Christen S,Dong X,Kuenen S,Voordeckers K,Verstreken P,Cassiman D,Vermeersch P,Verfaillie C,Hiller K,Fendt SM

    更新日期:2017-09-01 00:00:00

  • Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    abstract::This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and fi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.01.001

    authors: Priesnitz C,Niklas J,Rose T,Sandig V,Heinzle E

    更新日期:2012-03-01 00:00:00

  • Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.

    abstract::Current studies on microbial isoprene biosynthesis have mostly focused on regulation of the upstream mevalonic acid (MVA) or methyl-erythritol-4-phosphate (MEP) pathway. However, the downstream bottleneck restricting isoprene biosynthesis capacity caused by the weak expression and low activity of plant isoprene syntha...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.011

    authors: Wang F,Lv X,Xie W,Zhou P,Zhu Y,Yao Z,Yang C,Yang X,Ye L,Yu H

    更新日期:2017-01-01 00:00:00

  • Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.

    abstract::Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.012

    authors: Hirokawa Y,Kubo T,Soma Y,Saruta F,Hanai T

    更新日期:2020-01-01 00:00:00

  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • Engineering Escherichia coli to produce branched-chain fatty acids in high percentages.

    abstract::Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynth...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.07.003

    authors: Bentley GJ,Jiang W,Guamán LP,Xiao Y,Zhang F

    更新日期:2016-11-01 00:00:00

  • Geobacter sulfurreducens strain engineered for increased rates of respiration.

    abstract::Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these proces...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.06.005

    authors: Izallalen M,Mahadevan R,Burgard A,Postier B,Didonato R Jr,Sun J,Schilling CH,Lovley DR

    更新日期:2008-09-01 00:00:00

  • Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.

    abstract::Zerumbone, the predominant sesquiterpenoid component of Zingiber zerumbet, exhibits diverse pharmacological properties. In this study, de novo production of zerumbone was achieved in a metabolically engineered yeast cell factory by introducing α-humulene synthase (ZSS1), α-humulene 8-hydroxylase (CYP71BA1) and zerumbo...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.010

    authors: Zhang C,Liu J,Zhao F,Lu C,Zhao GR,Lu W

    更新日期:2018-09-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

    abstract::Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.007

    authors: Nduko JM,Matsumoto K,Ooi T,Taguchi S

    更新日期:2013-01-01 00:00:00

  • Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.

    abstract::Pigmented metabolites have great potential for use in biosensors that target low-resource areas, since sensor output can be interpreted without any equipment. However, full repression of pigment production when undesired is challenging, as even small amounts of enzyme can catalyze the production of large, visible amou...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.004

    authors: McNerney MP,Styczynski MP

    更新日期:2017-09-01 00:00:00

  • Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis.

    abstract::Selective estrogen receptor (ER) modulators are highly successful breast cancer therapies, but they are not effective in patients with ER negative and selective estrogen receptor modulator (SERM)-resistant tumors. Understanding the mechanisms of estrogen-stimulated proliferation may provide a route to design estrogen-...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.005

    authors: Forbes NS,Meadows AL,Clark DS,Blanch HW

    更新日期:2006-11-01 00:00:00

  • Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants.

    abstract::An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid me...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.03.001

    authors: Ruiz-Lopez N,Haslam RP,Usher SL,Napier JA,Sayanova O

    更新日期:2013-05-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.

    abstract::A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.05.001

    authors: Park SD,Lee JY,Sim SY,Kim Y,Lee HS

    更新日期:2007-07-01 00:00:00

  • Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    abstract::A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetob...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.004

    authors: Jang YS,Im JA,Choi SY,Lee JI,Lee SY

    更新日期:2014-05-01 00:00:00

  • Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.

    abstract::Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to se...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.011

    authors: Tuyishime P,Wang Y,Fan L,Zhang Q,Li Q,Zheng P,Sun J,Ma Y

    更新日期:2018-09-01 00:00:00

  • A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

    abstract::A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00023-5

    authors: Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

    更新日期:2003-04-01 00:00:00