Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae.

Abstract:

:One of the challenges in strain improvement by evolutionary engineering is to subsequently determine the molecular basis of the improved properties that were enriched from the natural genetic variation during the selective conditions. This study focuses on Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose- and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor were subjected to transcriptome analysis, intracellular metabolite measurements and metabolic flux analysis. Increased expression of the GAL-regulon and deletion of GAL2 in IMS0002 confirmed that the galactose transporter is essential for growth on arabinose. Elevated intracellular concentrations of pentose-phosphate-pathway intermediates and upregulation of TKL2 and YGR043c (encoding transketolase and transaldolase isoenzymes) suggested an involvement of these genes in flux-controlling reactions in arabinose fermentation. Indeed, deletion of these genes in IMS0002 caused a 21% reduction of the maximum specific growth rate on arabinose.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Wisselink HW,Cipollina C,Oud B,Crimi B,Heijnen JJ,Pronk JT,van Maris AJ

doi

10.1016/j.ymben.2010.08.003

subject

Has Abstract

pub_date

2010-11-01 00:00:00

pages

537-51

issue

6

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(10)00080-7

journal_volume

12

pub_type

杂志文章
  • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    abstract::Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-gui...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.09.006

    authors: Li H,Shen CR,Huang CH,Sung LY,Wu MY,Hu YC

    更新日期:2016-11-01 00:00:00

  • Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.

    abstract::Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.006

    authors: Tovilla-Coutiño DB,Momany C,Eiteman MA

    更新日期:2020-09-01 00:00:00

  • Streptomyces species: Ideal chassis for natural product discovery and overproduction.

    abstract::There is considerable interest in mining organisms for new natural products (NPs) and in improving methods to overproduce valuable NPs. Because of the rapid development of tools and strategies for metabolic engineering and the markedly increased knowledge of the biosynthetic pathways and genetics of NP-producing organ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2018.05.015

    authors: Liu R,Deng Z,Liu T

    更新日期:2018-11-01 00:00:00

  • Production of muconic acid in plants.

    abstract::Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.002

    authors: Eudes A,Berthomieu R,Hao Z,Zhao N,Benites VT,Baidoo EEK,Loqué D

    更新日期:2018-03-01 00:00:00

  • Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.

    abstract::Isobutanol is a valuable chemical and is considered a new generation biofuel. Construction of isobutanol synthesis pathways in bacteria is a hot topic in isobutanol production. Here, we show that an isobutanol synthesis pathway exists naturally in Klebsiella pneumoniae; however, this pathway is dormant in the wild-typ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.003

    authors: Gu J,Zhou J,Zhang Z,Kim CH,Jiang B,Shi J,Hao J

    更新日期:2017-09-01 00:00:00

  • Colored Petri net modeling and simulation of signal transduction pathways.

    abstract::Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.10.001

    authors: Lee DY,Zimmer R,Lee SY,Park S

    更新日期:2006-03-01 00:00:00

  • Metabolic engineering of E. coli for pyocyanin production.

    abstract::Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.002

    authors: da Silva AJ,Cunha JS,Hreha T,Micocci KC,Selistre-de-Araujo HS,Barquera B,Koffas MAG

    更新日期:2021-01-14 00:00:00

  • Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene.

    abstract::The chemical monomer p-hydroxystyrene (pHS) is used for producing a number of important industrial polymers from petroleum-based feedstocks. In an alternative approach, the microbial production of pHS can be envisioned by linking together a number of different metabolic pathways, of which those based on using glucose ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.01.002

    authors: Qi WW,Vannelli T,Breinig S,Ben-Bassat A,Gatenby AA,Haynie SL,Sariaslani FS

    更新日期:2007-05-01 00:00:00

  • Metabolic engineering of Amycolatopsis japonicum for optimized production of [S,S]-EDDS, a biodegradable chelator.

    abstract::The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persist...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.003

    authors: Edenhart S,Denneler M,Spohn M,Doskocil E,Kavšček M,Amon T,Kosec G,Smole J,Bardl B,Biermann M,Roth M,Wohlleben W,Stegmann E

    更新日期:2020-07-01 00:00:00

  • Spatial organization of enzymes for metabolic engineering.

    abstract::As synthetic pathways built from exogenous enzymes become more complicated, the probability of encountering undesired interactions with host organisms increases, thereby lowering product titer. An emerging strategy to combat this problem is to spatially organize pathway enzymes into multi-protein complexes, where high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2011.09.003

    authors: Lee H,DeLoache WC,Dueber JE

    更新日期:2012-05-01 00:00:00

  • CRISPR/Cas9 advances engineering of microbial cell factories.

    abstract::One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2015.12.003

    authors: Jakočiūnas T,Jensen MK,Keasling JD

    更新日期:2016-03-01 00:00:00

  • Metabolic engineering of isoprenoids.

    abstract::The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further inve...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2000.0168

    authors: Barkovich R,Liao JC

    更新日期:2001-01-01 00:00:00

  • Novel chemobiosynthetic approach for exclusive production of FK506.

    abstract::FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.11.003

    authors: Kosec G,Goranovič D,Mrak P,Fujs S,Kuščer E,Horvat J,Kopitar G,Petković H

    更新日期:2012-01-01 00:00:00

  • The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose.

    abstract::A mathematical model to describe carbon catabolite repression in Escherichia coli is developed and in part validated. The model is aggregated from two functional units describing glucose and lactose transport and degradation. Both units are members of the crp modulon and are under control of a global signal transducti...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2001.0199

    authors: Kremling A,Bettenbrock K,Laube B,Jahreis K,Lengeler JW,Gilles ED

    更新日期:2001-10-01 00:00:00

  • Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    abstract::The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.04.006

    authors: Curran KA,Alper HS

    更新日期:2012-07-01 00:00:00

  • An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica.

    abstract::Lipogenic organisms provide an ideal platform for biodiesel and oleochemical production. Through our previous rational metabolic engineering efforts, lipogenesis titers in Yarrowia lipolytica were significantly enhanced. However, the resulting strain still suffered from decreased biomass generation rates. Here, we emp...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.02.003

    authors: Liu L,Pan A,Spofford C,Zhou N,Alper HS

    更新日期:2015-05-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.

    abstract::3-Ketosteroid-△(1)-dehydrogenase (KstD) is a key enzyme involved in the microbial catabolism of sterols. Here, three homologues of KstD were characterized from Mycobacterium neoaurum ATCC 25795, showing distinct substrate preferences and transcriptional responses to steroids. Single deletion of any MN-kstD failed to r...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.05.005

    authors: Yao K,Xu LQ,Wang FQ,Wei DZ

    更新日期:2014-07-01 00:00:00

  • Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis.

    abstract::Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.08.002

    authors: Young JD,Shastri AA,Stephanopoulos G,Morgan JA

    更新日期:2011-11-01 00:00:00

  • Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.

    abstract::A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2007.05.001

    authors: Park SD,Lee JY,Sim SY,Kim Y,Lee HS

    更新日期:2007-07-01 00:00:00

  • Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.

    abstract::Current studies on microbial isoprene biosynthesis have mostly focused on regulation of the upstream mevalonic acid (MVA) or methyl-erythritol-4-phosphate (MEP) pathway. However, the downstream bottleneck restricting isoprene biosynthesis capacity caused by the weak expression and low activity of plant isoprene syntha...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.12.011

    authors: Wang F,Lv X,Xie W,Zhou P,Zhu Y,Yao Z,Yang C,Yang X,Ye L,Yu H

    更新日期:2017-01-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions.

    abstract::Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pse...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.03.003

    authors: Taymaz-Nikerel H,van Gulik WM,Heijnen JJ

    更新日期:2011-05-01 00:00:00

  • Engineering synergetic CO2-fixing pathways for malate production.

    abstract::Increasing the microbial CO2-fixing efficiency often requires supplying sufficient ATP and redirecting carbon flux for the production of metabolites. However, addressing these two issues concurrently remains a challenge. Here, we present a combinational strategy based on a synergetic CO2-fixing pathway that combines a...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.007

    authors: Hu G,Zhou J,Chen X,Qian Y,Gao C,Guo L,Xu P,Chen W,Chen J,Li Y,Liu L

    更新日期:2018-05-01 00:00:00

  • Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    abstract::Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The enginee...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.04.010

    authors: Nguyen AD,Hwang IY,Lee OK,Kim D,Kalyuzhnaya MG,Mariyana R,Hadiyati S,Kim MS,Lee EY

    更新日期:2018-05-01 00:00:00

  • Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal.

    abstract::An engineered reversal of the β-oxidation cycle (r-BOX) and the fatty acid biosynthesis (FAB) pathway are promising biological platforms for advanced fuel and chemical production in part due to their iterative nature supporting the synthesis of various chain length products. While diverging in their carbon-carbon elon...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.003

    authors: Clomburg JM,Contreras SC,Chou A,Siegel JB,Gonzalez R

    更新日期:2018-01-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.

    abstract::Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and car...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.009

    authors: Ma T,Shi B,Ye Z,Li X,Liu M,Chen Y,Xia J,Nielsen J,Deng Z,Liu T

    更新日期:2019-03-01 00:00:00

  • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.

    abstract::3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.01.005

    authors: Chen Y,Bao J,Kim IK,Siewers V,Nielsen J

    更新日期:2014-03-01 00:00:00

  • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.

    abstract::This paper presents a new mathematical framework for modeling of in vivo dynamics and for metabolic re-design: the linlog approach. This approach is an extension of metabolic control analysis (MCA), valid for large changes of enzyme and metabolite levels. Furthermore, the presented framework combines MCA with kinetic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00025-9

    authors: Visser D,Heijnen JJ

    更新日期:2003-07-01 00:00:00