The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose.

Abstract:

:A mathematical model to describe carbon catabolite repression in Escherichia coli is developed and in part validated. The model is aggregated from two functional units describing glucose and lactose transport and degradation. Both units are members of the crp modulon and are under control of a global signal transduction system which calculates the signals that turn on or off gene expression for the specific enzymes. Using isogenic mutant strains, our model is validated by a set of experiments. In these experiments, substrate composition of the preculture and of the experimental culture are varied in order to stimulate the system in different ways. With the obtained measurements (three states in the liquid phase and one intracellular component) a part of the model parameters could be estimated. Therefore all experiments could be sufficiently described with a single set of parameters.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Kremling A,Bettenbrock K,Laube B,Jahreis K,Lengeler JW,Gilles ED

doi

10.1006/mben.2001.0199

subject

Has Abstract

pub_date

2001-10-01 00:00:00

pages

362-79

issue

4

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(01)90199-5

journal_volume

3

pub_type

杂志文章
  • A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli.

    abstract::Global gene regulation throughout the Escherichia coli stress response to overexpression of each of five recombinant proteins was evaluated. Reverse-transcriptase polymerase chain reaction-amplified mRNA from induced and control cells were hybridized with a DNA array of Kohara clones representing 16% (700 genes) of th...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2000.0148

    authors: Gill RT,Valdes JJ,Bentley WE

    更新日期:2000-07-01 00:00:00

  • Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    abstract::A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetob...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.03.004

    authors: Jang YS,Im JA,Choi SY,Lee JI,Lee SY

    更新日期:2014-05-01 00:00:00

  • Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology.

    abstract::Metabolic Engineering offers an opportunity to forge a link between metabolic physiologists, working with mammalian systems and metabolic engineers. Many parallels may be drawn between the specific modification of metabolic networks to improve cellular properties and the analysis of metabolic networks in search of cau...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.10.008

    authors: Kelleher JK

    更新日期:2004-01-01 00:00:00

  • Down-regulation of cold-inducible RNA-binding protein does not improve hypothermic growth of Chinese hamster ovary cells producing erythropoietin.

    abstract::Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EP...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.11.003

    authors: Hong JK,Kim YG,Yoon SK,Lee GM

    更新日期:2007-03-01 00:00:00

  • Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase.

    abstract:BACKGROUND:6-Methylsalicylic acid synthase (MSAS), a fungal polyketide synthase from Penicillium patulum, is perhaps the simplest polyketide synthase that embodies several hallmarks of this family of multifunctional enzymes--a large multidomain protein, a high degree of specificity toward acetyl-CoA and malonyl-CoA sub...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0113

    authors: Richardson MT,Pohl NL,Kealey JT,Khosla C

    更新日期:1999-04-01 00:00:00

  • Metabolic engineering of tomato for high-yield production of astaxanthin.

    abstract::Dietary carotenoids have been shown to be beneficial to health by decreasing the risk of many diseases. Attempts to enhance carotenoids in food crops have been successful although higher plants appear to resist big changes of carotenoid biosynthesis by metabolic engineering. Here we report the generation of a more nut...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.02.005

    authors: Huang JC,Zhong YJ,Liu J,Sandmann G,Chen F

    更新日期:2013-05-01 00:00:00

  • Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.

    abstract::In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 1...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.012

    authors: Lu W,Ye L,Lv X,Xie W,Gu J,Chen Z,Zhu Y,Li A,Yu H

    更新日期:2015-05-01 00:00:00

  • Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT.

    abstract::3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD(+)-dependent γ-glutamyl-γ-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumon...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.09.004

    authors: Ashok S,Mohan Raj S,Ko Y,Sankaranarayanan M,Zhou S,Kumar V,Park S

    更新日期:2013-01-01 00:00:00

  • Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system.

    abstract::Crocins and picrocrocin are glycosylated apocarotenoids responsible, respectively, for the color and the unique taste of the saffron spice, known as red gold due to its high price. Several studies have also shown the health-promoting properties of these compounds. However, their high costs hamper the wide use of these...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.06.009

    authors: Martí M,Diretto G,Aragonés V,Frusciante S,Ahrazem O,Gómez-Gómez L,Daròs JA

    更新日期:2020-09-01 00:00:00

  • Metabolic engineering of E. coli for pyocyanin production.

    abstract::Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.002

    authors: da Silva AJ,Cunha JS,Hreha T,Micocci KC,Selistre-de-Araujo HS,Barquera B,Koffas MAG

    更新日期:2021-01-14 00:00:00

  • Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    abstract::Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the constructi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.002

    authors: Young EM,Zhao Z,Gielesen BEM,Wu L,Benjamin Gordon D,Roubos JA,Voigt CA

    更新日期:2018-07-01 00:00:00

  • Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli.

    abstract::Numerous value-added chemicals can be produced using xylan as a feedstock. However, the product yields are limited by low xylan utilization efficiency, as well as by carbon flux competition between biomass production and biosynthesis. Herein, a dynamic consolidated bioprocessing strategy was developed, which coupled x...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.001

    authors: Gao C,Guo L,Ding Q,Hu G,Ye C,Liu J,Chen X,Liu L

    更新日期:2020-07-01 00:00:00

  • Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.

    abstract::Hydrocortisone is an effective anti-inflammatory drug and also an important intermediate for synthesis of other steroid drugs. The filamentous fungus Absidia orchidis is renowned for biotransformation of acetylated cortexolone through 11β-hydroxylation to produce hydrocortisone. However, due to the presence of 11α-hyd...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.10.006

    authors: Chen J,Fan F,Qu G,Tang J,Xi Y,Bi C,Sun Z,Zhang X

    更新日期:2020-01-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Punicic acid production in Brassica napus.

    abstract::Punicic acid (PuA; 18:3Δ9cis,11trans,13cis), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.08.011

    authors: Xu Y,Mietkiewska E,Shah S,Weselake RJ,Chen G

    更新日期:2020-11-01 00:00:00

  • Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.

    abstract::Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.012

    authors: Hirokawa Y,Kubo T,Soma Y,Saruta F,Hanai T

    更新日期:2020-01-01 00:00:00

  • Metabolic engineering to enhance the value of plants as green factories.

    abstract::The promise of plants to serve as the green factories of the future is ever increasing. Plants have been used traditionally for construction, energy, food and feed. Bioactive compounds primarily derived from specialized plant metabolism continue to serve as important scaffold molecules for pharmaceutical drug producti...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2014.11.005

    authors: Yuan L,Grotewold E

    更新日期:2015-01-01 00:00:00

  • Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    abstract::We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.009

    authors: Cordova LT,Long CP,Venkataramanan KP,Antoniewicz MR

    更新日期:2015-11-01 00:00:00

  • Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli.

    abstract::High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.04.003

    authors: Ohtake T,Pontrelli S,Laviña WA,Liao JC,Putri SP,Fukusaki E

    更新日期:2017-05-01 00:00:00

  • A biosynthetic route for polysialylating proteins in Escherichia coli.

    abstract::Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in v...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.10.012

    authors: Keys TG,Wetter M,Hang I,Rutschmann C,Russo S,Mally M,Steffen M,Zuppiger M,Müller F,Schneider J,Faridmoayer A,Lin CW,Aebi M

    更新日期:2017-11-01 00:00:00

  • Metabolic engineering of fatty acid biosynthesis in plants.

    abstract::Fatty acids are the most abundant form of reduced carbon chains available from nature and have diverse uses ranging from food to industrial feedstocks. Plants represent a significant renewable source of fatty acids because many species accumulate them in the form of triacylglycerol as major storage components in seeds...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2001.0204

    authors: Thelen JJ,Ohlrogge JB

    更新日期:2002-01-01 00:00:00

  • Methods and applications for assembling large DNA constructs.

    abstract::The construction of large DNA molecules that encode pathways, biological machinery, and entire genomes has been limited to the reproduction of natural sequences. However, now that robust methods for assembling hundreds of DNA fragments into constructs > 20 kb are readily available, optimization of large genetic elemen...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2012.02.005

    authors: Merryman C,Gibson DG

    更新日期:2012-05-01 00:00:00

  • Recombinant strains for the enhanced production of bioengineered rapalogs.

    abstract::The rapK gene required for biosynthesis of the DHCHC starter acid that initiates rapamycin biosynthesis was deleted from strain BIOT-3410, a derivative of Streptomyces rapamycinicus which had been subjected to classical strain and process development and capable of robust rapamycin production at titres up to 250mg/L. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.001

    authors: Kendrew SG,Petkovic H,Gaisser S,Ready SJ,Gregory MA,Coates NJ,Nur-E-Alam M,Warneck T,Suthar D,Foster TA,McDonald L,Schlingman G,Koehn FE,Skotnicki JS,Carter GT,Moss SJ,Zhang MQ,Martin CJ,Sheridan RM,Wilkinson B

    更新日期:2013-01-01 00:00:00

  • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    abstract::Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endog...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.03.007

    authors: Zhang J,Zong W,Hong W,Zhang ZT,Wang Y

    更新日期:2018-05-01 00:00:00

  • CRISPR/Cas9 advances engineering of microbial cell factories.

    abstract::One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2015.12.003

    authors: Jakočiūnas T,Jensen MK,Keasling JD

    更新日期:2016-03-01 00:00:00

  • Colored Petri net modeling and simulation of signal transduction pathways.

    abstract::Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal grow...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.10.001

    authors: Lee DY,Zimmer R,Lee SY,Park S

    更新日期:2006-03-01 00:00:00

  • Metabolic engineering of Amycolatopsis japonicum for optimized production of [S,S]-EDDS, a biodegradable chelator.

    abstract::The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persist...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.003

    authors: Edenhart S,Denneler M,Spohn M,Doskocil E,Kavšček M,Amon T,Kosec G,Smole J,Bardl B,Biermann M,Roth M,Wohlleben W,Stegmann E

    更新日期:2020-07-01 00:00:00

  • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.

    abstract::This paper presents a new mathematical framework for modeling of in vivo dynamics and for metabolic re-design: the linlog approach. This approach is an extension of metabolic control analysis (MCA), valid for large changes of enzyme and metabolite levels. Furthermore, the presented framework combines MCA with kinetic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00025-9

    authors: Visser D,Heijnen JJ

    更新日期:2003-07-01 00:00:00

  • Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum.

    abstract::The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different control...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0129

    authors: Lapujade P,Goergen JL,Engasser JM

    更新日期:1999-07-01 00:00:00

  • Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli.

    abstract::The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology acc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.09.003

    authors: Lim JH,Seo SW,Kim SY,Jung GY

    更新日期:2013-11-01 00:00:00