Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.

Abstract:

:Pigmented metabolites have great potential for use in biosensors that target low-resource areas, since sensor output can be interpreted without any equipment. However, full repression of pigment production when undesired is challenging, as even small amounts of enzyme can catalyze the production of large, visible amounts of pigment. The red pigment lycopene could be particularly useful because of its position in the multi-pigment carotenoid pathway, but commonly used inducible promoter systems cannot repress lycopene production. In this paper, we designed a system that could fully repress lycopene production in the absence of an inducer and produce visible lycopene within two hours of induction. We engineered Lac, Ara, and T7 systems to be up to 10 times more repressible, but these improved systems could still not fully repress lycopene. Translational modifications proved much more effective in controlling lycopene. By decreasing the strength of the ribosomal binding sites on the crtEBI genes, we enabled full repression of lycopene and production of visible lycopene in 3-4h of induction. Finally, we added the mevalonate pathway enzymes to increase the rate of lycopene production upon induction and demonstrated that supplementation of metabolic precursors could decrease the time to coloration to about 1.5h. In total, this represents over an order of magnitude reduction in response time compared to the previously reported strategy. The approaches used here demonstrate the disconnect between fluorescent and metabolite reporters, help enable the use of lycopene as a reporter, and are likely generalizable to other systems that require precise control of metabolite production.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

McNerney MP,Styczynski MP

doi

10.1016/j.ymben.2017.07.004

subject

Has Abstract

pub_date

2017-09-01 00:00:00

pages

46-53

issue

Pt A

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(17)30137-4

journal_volume

43

pub_type

杂志文章
  • High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae.

    abstract::Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.02.011

    authors: Takpho N,Watanabe D,Takagi H

    更新日期:2018-03-01 00:00:00

  • Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme.

    abstract::Ginsenoside Rh2 is a potential anticancer drug isolated from medicinal plant ginseng. Fermentative production of ginsenoside Rh2 in yeast has recently been investigated as an alternative strategy compared to extraction from plants. However, the titer was quite low due to low catalytic capability of the key ginseng gly...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.04.009

    authors: Zhuang Y,Yang GY,Chen X,Liu Q,Zhang X,Deng Z,Feng Y

    更新日期:2017-07-01 00:00:00

  • Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.

    abstract::To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.01.004

    authors: Sawada K,Zen-in S,Wada M,Yokota A

    更新日期:2010-07-01 00:00:00

  • A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism.

    abstract::Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metab...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.12.003

    authors: Baughman AC,Sharfstein ST,Martin LL

    更新日期:2011-03-01 00:00:00

  • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    abstract::Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.006

    authors: Song JY,Park JS,Kang CD,Cho HY,Yang D,Lee S,Cho KM

    更新日期:2016-05-01 00:00:00

  • Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.

    abstract::A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.003

    authors: Kim CL,Lee GM

    更新日期:2019-03-01 00:00:00

  • Controlling cell-free metabolism through physiochemical perturbations.

    abstract::Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of bio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.11.005

    authors: Karim AS,Heggestad JT,Crowe SA,Jewett MC

    更新日期:2018-01-01 00:00:00

  • 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling.

    abstract::13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Her...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.06.007

    authors: Long CP,Au J,Gonzalez JE,Antoniewicz MR

    更新日期:2016-11-01 00:00:00

  • Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

    abstract::Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constrain...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.004

    authors: Geertman JM,van Maris AJ,van Dijken JP,Pronk JT

    更新日期:2006-11-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Engineering of α-1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli.

    abstract::Fucosyllactoses (FLs), present in human breast milk, have been reported to benefit human health immensely. Especially, 3-fucosyllactose (3-FL) has numerous benefits associated with a healthy gut ecosystem. Metabolic engineering of microorganisms is thought to be currently the only option to provide an economically fea...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.021

    authors: Yu J,Shin J,Park M,Seydametova E,Jung SM,Seo JH,Kweon DH

    更新日期:2018-07-01 00:00:00

  • Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants.

    abstract::An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid me...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.03.001

    authors: Ruiz-Lopez N,Haslam RP,Usher SL,Napier JA,Sayanova O

    更新日期:2013-05-01 00:00:00

  • Ensemble modeling for strain development of L-lysine-producing Escherichia coli.

    abstract::One of the main strategies to improve the production of relevant metabolites has been the manipulation of single or multiple key genes in the metabolic pathways. This kind of strategy requires several rounds of experiments to identify enzymes that impact either yield or productivity. The use of mathematical tools to f...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.04.002

    authors: Contador CA,Rizk ML,Asenjo JA,Liao JC

    更新日期:2009-07-01 00:00:00

  • Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    abstract::Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, b...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.02.004

    authors: Veiga T,Gombert AK,Landes N,Verhoeven MD,Kiel JA,Krikken AM,Nijland JG,Touw H,Luttik MA,van der Toorn JC,Driessen AJ,Bovenberg RA,van den Berg MA,van der Klei IJ,Pronk JT,Daran JM

    更新日期:2012-07-01 00:00:00

  • Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum.

    abstract::Metabolic engineering technology for industrial microorganisms is under development to create rational, more reliable, and more cost-effective approaches to strain improvement. Strain improvement is a critical component of the drug development process, yet the genetic basis for high production by industrial microorgan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.03.003

    authors: Reeves AR,Cernota WH,Brikun IA,Wesley RK,Weber JM

    更新日期:2004-10-01 00:00:00

  • Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production.

    abstract::Methanol is a promising feedstock for bioproduction of fuels and chemicals, thus massive efforts have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. Herein, we rationally designed and experimentally engineered the industrial workhorse Corynebacterium glutamicum to se...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.07.011

    authors: Tuyishime P,Wang Y,Fan L,Zhang Q,Li Q,Zheng P,Sun J,Ma Y

    更新日期:2018-09-01 00:00:00

  • Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit.

    abstract::To mimic the delicately regulated metabolism in nature for improved efficiency, artificial and customized regulatory components for dynamically controlling metabolic networks in multiple layers are essential in laboratory engineering. For this purpose, a novel regulatory component for controlling vanillin biosynthetic...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.12.002

    authors: Liang C,Zhang X,Wu J,Mu S,Wu Z,Jin JM,Tang SY

    更新日期:2020-01-01 00:00:00

  • A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    abstract::Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.010

    authors: Formighieri C,Melis A

    更新日期:2015-11-01 00:00:00

  • Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    abstract::Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-C...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.08.003

    authors: Rodriguez A,Kildegaard KR,Li M,Borodina I,Nielsen J

    更新日期:2015-09-01 00:00:00

  • Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli.

    abstract::The intracellular redox state plays an important role in the cellular physiology that determines the efficiency of chemical and biofuel production by microbial cell factories. However, it is difficult to achieve optimal redox rebalancing of synthetic pathways owing to the sensitive responses of cellular physiology acc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.09.003

    authors: Lim JH,Seo SW,Kim SY,Jung GY

    更新日期:2013-11-01 00:00:00

  • Down-regulation of cold-inducible RNA-binding protein does not improve hypothermic growth of Chinese hamster ovary cells producing erythropoietin.

    abstract::Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EP...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.11.003

    authors: Hong JK,Kim YG,Yoon SK,Lee GM

    更新日期:2007-03-01 00:00:00

  • Machine learning for metabolic engineering: A review.

    abstract::Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2020.10.005

    authors: Lawson CE,Martí JM,Radivojevic T,Jonnalagadda SVR,Gentz R,Hillson NJ,Peisert S,Kim J,Simmons BA,Petzold CJ,Singer SW,Mukhopadhyay A,Tanjore D,Dunn JG,Garcia Martin H

    更新日期:2021-01-01 00:00:00

  • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    abstract::Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the availabl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.01.009

    authors: Andreozzi S,Chakrabarti A,Soh KC,Burgard A,Yang TH,Van Dien S,Miskovic L,Hatzimanikatis V

    更新日期:2016-05-01 00:00:00

  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • Metabolic engineering of isoprenoids.

    abstract::The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further inve...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1006/mben.2000.0168

    authors: Barkovich R,Liao JC

    更新日期:2001-01-01 00:00:00

  • Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    abstract::Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.06.004

    authors: Appelhagen I,Wulff-Vester AK,Wendell M,Hvoslef-Eide AK,Russell J,Oertel A,Martens S,Mock HP,Martin C,Matros A

    更新日期:2018-07-01 00:00:00

  • Overproduction of free fatty acids in E. coli: implications for biodiesel production.

    abstract::Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.08.006

    authors: Lu X,Vora H,Khosla C

    更新日期:2008-11-01 00:00:00

  • Impact of 'ome' analyses on inverse metabolic engineering.

    abstract::Genome-wide or large-scale methodologies employed in functional genomics such as DNA sequencing, transcription profiling, proteomics, and metabolite profiling have become important tools in many metabolic engineering strategies. These techniques allow the identification of genetic differences and insight into their ce...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2003.11.005

    authors: Bro C,Nielsen J

    更新日期:2004-07-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942.

    abstract::Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.07.012

    authors: Hirokawa Y,Kubo T,Soma Y,Saruta F,Hanai T

    更新日期:2020-01-01 00:00:00