Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

Abstract:

:The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79mM, 0.29g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6mM, 1.16g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1mM, 1.22g/l) and this was higher than glycerol accumulation (9.46mM, 0.87g/l). The improved titer was over 4-fold higher than that of our previous study.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Hirokawa Y,Maki Y,Hanai T

doi

10.1016/j.ymben.2016.12.001

subject

Has Abstract

pub_date

2017-01-01 00:00:00

pages

192-199

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(16)30146-X

journal_volume

39

pub_type

杂志文章
  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • Generation of serum-stabilized retroviruses: reduction of alpha1,3gal-epitope synthesis in a murine NIH3T3-derived packaging cell line by expression of chimeric glycosyltransferases.

    abstract::Retroviral vectors released from mouse-derived packaging cell lines are inactivated in human sera by naturally occurring antibodies due to the recognition of Galalpha1,3Galbeta1,4GlcNAc (alphagal-epitope) decorated surface proteins. In this study, an extensive analysis of the glycosylation potential of NIH3T3-derived ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2005.02.004

    authors: Hansen W,Grabenhorst E,Nimtz M,Müller K,Conradt HS,Wirth M

    更新日期:2005-05-01 00:00:00

  • Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.

    abstract::To obtain fast growing oil-rich microalgal strains has been urgently demanded for microalgal biofuel. Malic enzyme (ME), which is involved in pyruvate metabolism and carbon fixation, was first characterized in microalgae here. Overexpression of Phaeodactylum tricornutum ME (PtME) significantly enhanced the expression ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.10.002

    authors: Xue J,Niu YF,Huang T,Yang WD,Liu JS,Li HY

    更新日期:2015-01-01 00:00:00

  • Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.

    abstract::A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.003

    authors: Kim CL,Lee GM

    更新日期:2019-03-01 00:00:00

  • Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens.

    abstract::Succinic acid is a platform chemical of recognized industrial value and accordingly faces a continuous challenge to enable manufacturing from most attractive raw materials. It is mainly produced from glucose, using microbial fermentation. Here, we explore and optimize succinate production from sucrose, a globally appl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.10.003

    authors: Lange A,Becker J,Schulze D,Cahoreau E,Portais JC,Haefner S,Schröder H,Krawczyk J,Zelder O,Wittmann C

    更新日期:2017-11-01 00:00:00

  • Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).

    abstract::Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for pro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2019.03.006

    authors: Chen Y,Chen XY,Du HT,Zhang X,Ma YM,Chen JC,Ye JW,Jiang XR,Chen GQ

    更新日期:2019-07-01 00:00:00

  • Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma.

    abstract::Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation redu...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(02)00011-3

    authors: Chan C,Berthiaume F,Lee K,Yarmush ML

    更新日期:2003-01-01 00:00:00

  • A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing.

    abstract::We generated a genomic library from sheared Clostridium acetobutylicum ATCC 824 DNA, whereby inserts can be expressed in both directions from the thiolase promoter, P(thl). Serial transfer of library-bearing C. acetobutylicum cultures exposed to increasing butyrate concentrations enriched for inserts containing fragme...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2009.12.004

    authors: Borden JR,Jones SW,Indurthi D,Chen Y,Papoutsakis ET

    更新日期:2010-05-01 00:00:00

  • Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    abstract::Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the availabl...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.01.009

    authors: Andreozzi S,Chakrabarti A,Soh KC,Burgard A,Yang TH,Van Dien S,Miskovic L,Hatzimanikatis V

    更新日期:2016-05-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00

  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene.

    abstract::Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and car...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.11.009

    authors: Ma T,Shi B,Ye Z,Li X,Liu M,Chen Y,Xia J,Nielsen J,Deng Z,Liu T

    更新日期:2019-03-01 00:00:00

  • Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.

    abstract::The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.10.003

    authors: Lin H,Bennett GN,San KY

    更新日期:2005-03-01 00:00:00

  • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    abstract::Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.006

    authors: Song JY,Park JS,Kang CD,Cho HY,Yang D,Lee S,Cho KM

    更新日期:2016-05-01 00:00:00

  • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    abstract::5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.011

    authors: Park SJ,Kim EY,Noh W,Park HM,Oh YH,Lee SH,Song BK,Jegal J,Lee SY

    更新日期:2013-03-01 00:00:00

  • Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    abstract::Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characte...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.07.001

    authors: Curran KA,Karim AS,Gupta A,Alper HS

    更新日期:2013-09-01 00:00:00

  • Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    abstract::Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the constructi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.002

    authors: Young EM,Zhao Z,Gielesen BEM,Wu L,Benjamin Gordon D,Roubos JA,Voigt CA

    更新日期:2018-07-01 00:00:00

  • Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Kl

    abstract::Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidat...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.04.004

    authors: Jantama K,Polyiam P,Khunnonkwao P,Chan S,Sangproo M,Khor K,Jantama SS,Kanchanatawee S

    更新日期:2015-07-01 00:00:00

  • A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    abstract::Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.016

    authors: Kim T,Folcher M,Charpin-El Hamri G,Fussenegger M

    更新日期:2015-05-01 00:00:00

  • Metabolic engineering of E. coli for pyocyanin production.

    abstract::Pyocyanin is a secondary metabolite from Pseudomonas aeruginosa that belongs to the class of phenazines, which are aromatic nitrogenous compounds with numerous biological functions. Besides its antifungal and antimicrobial activities, pyocyanin is a remarkable redox-active molecule with potential applications ranging ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2021.01.002

    authors: da Silva AJ,Cunha JS,Hreha T,Micocci KC,Selistre-de-Araujo HS,Barquera B,Koffas MAG

    更新日期:2021-01-14 00:00:00

  • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    abstract::Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endog...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.03.007

    authors: Zhang J,Zong W,Hong W,Zhang ZT,Wang Y

    更新日期:2018-05-01 00:00:00

  • A dynamic metabolite valve for the control of central carbon metabolism.

    abstract::Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.08.006

    authors: Solomon KV,Sanders TM,Prather KL

    更新日期:2012-11-01 00:00:00

  • Cell-free styrene biosynthesis at high titers.

    abstract::Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the l...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.05.009

    authors: Grubbe WS,Rasor BJ,Krüger A,Jewett MC,Karim AS

    更新日期:2020-09-01 00:00:00

  • Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    abstract::Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity o...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.04.009

    authors: Xie W,Lv X,Ye L,Zhou P,Yu H

    更新日期:2015-07-01 00:00:00

  • Novel chemobiosynthetic approach for exclusive production of FK506.

    abstract::FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.11.003

    authors: Kosec G,Goranovič D,Mrak P,Fujs S,Kuščer E,Horvat J,Kopitar G,Petković H

    更新日期:2012-01-01 00:00:00

  • Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase.

    abstract:BACKGROUND:6-Methylsalicylic acid synthase (MSAS), a fungal polyketide synthase from Penicillium patulum, is perhaps the simplest polyketide synthase that embodies several hallmarks of this family of multifunctional enzymes--a large multidomain protein, a high degree of specificity toward acetyl-CoA and malonyl-CoA sub...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0113

    authors: Richardson MT,Pohl NL,Kealey JT,Khosla C

    更新日期:1999-04-01 00:00:00

  • Metabolic engineering of tomato for high-yield production of astaxanthin.

    abstract::Dietary carotenoids have been shown to be beneficial to health by decreasing the risk of many diseases. Attempts to enhance carotenoids in food crops have been successful although higher plants appear to resist big changes of carotenoid biosynthesis by metabolic engineering. Here we report the generation of a more nut...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2013.02.005

    authors: Huang JC,Zhong YJ,Liu J,Sandmann G,Chen F

    更新日期:2013-05-01 00:00:00

  • Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.

    abstract::In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 1...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.03.012

    authors: Lu W,Ye L,Lv X,Xie W,Gu J,Chen Z,Zhu Y,Li A,Yu H

    更新日期:2015-05-01 00:00:00

  • Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose.

    abstract::Using the carbon isotope labeling technique, the response of cyanobacterial central carbon metabolism to the change in environmental conditions was investigated. Synechocystis was grown in the heterotrophic and mixotrophic cultures fed with 13C-labeled glucose. The labeling patterns of the amino acids in biomass hydro...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2002.0226

    authors: Yang C,Hua Q,Shimizu K

    更新日期:2002-07-01 00:00:00

  • Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth.

    abstract::The complete genome sequence of the filamentous fungi Aspergillus nidulans has paved the way for fundamental research on this industrially important species. To the best of our knowledge, this is the first time a gene encoding for ATP-dependent NADH kinase (ATP:NADH 2'-phosphotransferase, EC 2.7.1.86) has been identif...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.08.008

    authors: Panagiotou G,Grotkjaer T,Hofmann G,Bapat PM,Olsson L

    更新日期:2009-01-01 00:00:00

  • Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum.

    abstract::The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different control...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0129

    authors: Lapujade P,Goergen JL,Engasser JM

    更新日期:1999-07-01 00:00:00