Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

Abstract:

:β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.

journal_name

Metab Eng

journal_title

Metabolic engineering

authors

Kallscheuer N,Polen T,Bott M,Marienhagen J

doi

10.1016/j.ymben.2017.05.004

subject

Has Abstract

pub_date

2017-07-01 00:00:00

pages

33-42

eissn

1096-7176

issn

1096-7184

pii

S1096-7176(17)30060-5

journal_volume

42

pub_type

杂志文章,评审
  • Metabolic engineering of Amycolatopsis japonicum for optimized production of [S,S]-EDDS, a biodegradable chelator.

    abstract::The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persist...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.04.003

    authors: Edenhart S,Denneler M,Spohn M,Doskocil E,Kavšček M,Amon T,Kosec G,Smole J,Bardl B,Biermann M,Roth M,Wohlleben W,Stegmann E

    更新日期:2020-07-01 00:00:00

  • Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide.

    abstract::β-Nicotinamide mononucleotide (NMN) is, one of the nucleotide compounds, a precursor of NAD+ and has recently attracted attention as a nutraceutical. Here, we develop a whole-cell biocatalyst using Escherichia coli, which enabled selective and effective high production of NMN from the inexpensive feedstock substrates ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2020.11.008

    authors: Shoji S,Yamaji T,Makino H,Ishii J,Kondo A

    更新日期:2020-11-18 00:00:00

  • The organization of metabolic reaction networks. II. Signal processing in hierarchical structured functional units.

    abstract::Based on the analysis of molecular interactions of proteins with DNA binding sites, a new approach to developing mathematical models describing gene expression is introduced. Detection of hierarchical structures in metabolic networks can be used to decompose complex reaction schemes. This will be achieved by assigning...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.2000.0175

    authors: Kremling A,Gilles ED

    更新日期:2001-04-01 00:00:00

  • Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions.

    abstract::(13)C metabolic flux analysis (MFA) has become an important and powerful tool for the quantitative analysis of metabolic networks in the framework of metabolic engineering. Isotopically instationary (13)C MFA under metabolic stationary conditions is a promising refinement of classical stationary MFA. It accounts for t...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.05.006

    authors: Nöh K,Wahl A,Wiechert W

    更新日期:2006-11-01 00:00:00

  • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.

    abstract::To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.11.003

    authors: Guo ZP,Zhang L,Ding ZY,Shi GY

    更新日期:2011-01-01 00:00:00

  • Engineering microbes for isoprene production.

    abstract::Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2016.07.005

    authors: Ye L,Lv X,Yu H

    更新日期:2016-11-01 00:00:00

  • Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway.

    abstract::In this report, we identify the relevant factors to increase production of medium chain n-alcohols through an expanded view of the reverse β-oxidation pathway. We began by creating a base strain capable of producing medium chain n-alcohols from glucose using a redox-balanced and growth-coupled metabolic engineering st...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.011

    authors: Mehrer CR,Incha MR,Politz MC,Pfleger BF

    更新日期:2018-07-01 00:00:00

  • Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures.

    abstract::N-linked glycosylation of proteins has both functional and structural significance. Importantly, the glycan structure of a therapeutic protein influences its efficacy, pharmacokinetics, pharmacodynamics and immunogenicity. In this work, we developed glycosylation flux analysis (GFA) for predicting intracellular produc...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2017.07.005

    authors: Hutter S,Villiger TK,Brühlmann D,Stettler M,Broly H,Soos M,Gunawan R

    更新日期:2017-09-01 00:00:00

  • Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma.

    abstract::Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation redu...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(02)00011-3

    authors: Chan C,Berthiaume F,Lee K,Yarmush ML

    更新日期:2003-01-01 00:00:00

  • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    abstract::Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-gui...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.09.006

    authors: Li H,Shen CR,Huang CH,Sung LY,Wu MY,Hu YC

    更新日期:2016-11-01 00:00:00

  • Down-regulation of cold-inducible RNA-binding protein does not improve hypothermic growth of Chinese hamster ovary cells producing erythropoietin.

    abstract::Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EP...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.11.003

    authors: Hong JK,Kim YG,Yoon SK,Lee GM

    更新日期:2007-03-01 00:00:00

  • Effect of glucose analog supplementation on metabolic flux distribution in anaerobic chemostat cultures of Escherichia coli.

    abstract::Previous work in our laboratories investigated the use of methyl alpha-glucoside (alpha-MG), a glucose analog that shares a phosphotransferase system with glucose, to modulate glucose uptake and therefore reduce acetate accumulation. The results of that study showed a significant improvement in batch culture performan...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1006/mben.1999.0141

    authors: Berríos-Rivera SJ,Yang YT,Bennett GN,San KY

    更新日期:2000-04-01 00:00:00

  • Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    abstract::We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2014.07.006

    authors: Sandoval CM,Ayson M,Moss N,Lieu B,Jackson P,Gaucher SP,Horning T,Dahl RH,Denery JR,Abbott DA,Meadows AL

    更新日期:2014-09-01 00:00:00

  • Geobacter sulfurreducens strain engineered for increased rates of respiration.

    abstract::Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these proces...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2008.06.005

    authors: Izallalen M,Mahadevan R,Burgard A,Postier B,Didonato R Jr,Sun J,Schilling CH,Lovley DR

    更新日期:2008-09-01 00:00:00

  • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.

    abstract::Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enable...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.06.006

    authors: Li Y,Lin Z,Huang C,Zhang Y,Wang Z,Tang YJ,Chen T,Zhao X

    更新日期:2015-09-01 00:00:00

  • Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    abstract::This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and fi...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.01.001

    authors: Priesnitz C,Niklas J,Rose T,Sandig V,Heinzle E

    更新日期:2012-03-01 00:00:00

  • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae.

    abstract::One of the challenges in strain improvement by evolutionary engineering is to subsequently determine the molecular basis of the improved properties that were enriched from the natural genetic variation during the selective conditions. This study focuses on Saccharomyces cerevisiae IMS0002 which, after metabolic and ev...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.08.003

    authors: Wisselink HW,Cipollina C,Oud B,Crimi B,Heijnen JJ,Pronk JT,van Maris AJ

    更新日期:2010-11-01 00:00:00

  • Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.

    abstract::Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate d...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.02.009

    authors: Cardenas J,Da Silva NA

    更新日期:2016-07-01 00:00:00

  • Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield.

    abstract::The potential to produce succinate aerobically in Escherichia coli would offer great advantages over anaerobic fermentation in terms of faster biomass generation, carbon throughput, and product formation. Genetic manipulations were performed on two aerobic succinate production systems to increase their succinate yield...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2004.10.003

    authors: Lin H,Bennett GN,San KY

    更新日期:2005-03-01 00:00:00

  • Novel chemobiosynthetic approach for exclusive production of FK506.

    abstract::FK506, a widely used immunosuppressant, is produced by industrial fermentation processes using various Streptomyces species. Independently of the strain, structurally related compound FK520 is co-produced, resulting in complex and costly isolation procedures. In this paper, we report a chemobiosynthetic approach for e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.11.003

    authors: Kosec G,Goranovič D,Mrak P,Fujs S,Kuščer E,Horvat J,Kopitar G,Petković H

    更新日期:2012-01-01 00:00:00

  • A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis.

    abstract::A Windows program for metabolic engineering analysis and experimental design has been developed. A graphical user interface enables the pictorial, "on-screen" construction of a metabolic network. Once a model is composed, balance equations are automatically generated. Model construction, modification and information e...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/s1096-7176(03)00023-5

    authors: Zhu T,Phalakornkule C,Ghosh S,Grossmann IE,Koepsel RR,Ataai MM,Domach MM

    更新日期:2003-04-01 00:00:00

  • Spatial organization of enzymes for metabolic engineering.

    abstract::As synthetic pathways built from exogenous enzymes become more complicated, the probability of encountering undesired interactions with host organisms increases, thereby lowering product titer. An emerging strategy to combat this problem is to spatially organize pathway enzymes into multi-protein complexes, where high...

    journal_title:Metabolic engineering

    pub_type: 杂志文章,评审

    doi:10.1016/j.ymben.2011.09.003

    authors: Lee H,DeLoache WC,Dueber JE

    更新日期:2012-05-01 00:00:00

  • Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032.

    abstract::To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditio...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2010.01.004

    authors: Sawada K,Zen-in S,Wada M,Yokota A

    更新日期:2010-07-01 00:00:00

  • Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    abstract::Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2015.09.006

    authors: Song JY,Park JS,Kang CD,Cho HY,Yang D,Lee S,Cho KM

    更新日期:2016-05-01 00:00:00

  • Recombinant strains for the enhanced production of bioengineered rapalogs.

    abstract::The rapK gene required for biosynthesis of the DHCHC starter acid that initiates rapamycin biosynthesis was deleted from strain BIOT-3410, a derivative of Streptomyces rapamycinicus which had been subjected to classical strain and process development and capable of robust rapamycin production at titres up to 250mg/L. ...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.11.001

    authors: Kendrew SG,Petkovic H,Gaisser S,Ready SJ,Gregory MA,Coates NJ,Nur-E-Alam M,Warneck T,Suthar D,Foster TA,McDonald L,Schlingman G,Koehn FE,Skotnicki JS,Carter GT,Moss SJ,Zhang MQ,Martin CJ,Sheridan RM,Wilkinson B

    更新日期:2013-01-01 00:00:00

  • Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    abstract::Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, b...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2012.02.004

    authors: Veiga T,Gombert AK,Landes N,Verhoeven MD,Kiel JA,Krikken AM,Nijland JG,Touw H,Luttik MA,van der Toorn JC,Driessen AJ,Bovenberg RA,van den Berg MA,van der Klei IJ,Pronk JT,Daran JM

    更新日期:2012-07-01 00:00:00

  • Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.

    abstract::Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constrain...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2006.06.004

    authors: Geertman JM,van Maris AJ,van Dijken JP,Pronk JT

    更新日期:2006-11-01 00:00:00

  • Functional genomics for the oleaginous yeast Yarrowia lipolytica.

    abstract::Oleaginous yeasts are valuable systems for biosustainable production of hydrocarbon-based chemicals. Yarrowia lipolytica is one of the best characterized of these yeast with respect to genome annotation and flux analysis of metabolic processes. Nonetheless, progress is hampered by a dearth of genome-wide tools enablin...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2018.05.008

    authors: Patterson K,Yu J,Landberg J,Chang I,Shavarebi F,Bilanchone V,Sandmeyer S

    更新日期:2018-07-01 00:00:00

  • Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    abstract::Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approa...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2011.09.006

    authors: Zhu J,Sánchez A,Bennett GN,San KY

    更新日期:2011-11-01 00:00:00

  • Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors.

    abstract::Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function,...

    journal_title:Metabolic engineering

    pub_type: 杂志文章

    doi:10.1016/j.ymben.2016.11.005

    authors: Lorendeau D,Rinaldi G,Boon R,Spincemaille P,Metzger K,Jäger C,Christen S,Dong X,Kuenen S,Voordeckers K,Verstreken P,Cassiman D,Vermeersch P,Verfaillie C,Hiller K,Fendt SM

    更新日期:2017-09-01 00:00:00