Constitutive and regulated expression of the mouse Dinb (Polkappa) gene encoding DNA polymerase kappa.

Abstract:

:A recently discovered group of novel polymerases are characterized by significantly reduced fidelity of DNA synthesis in vitro. This feature is consistent with the relaxed fidelity required for the replicative bypass of various types of base damage that frequently block high fidelity replicative polymerases. The present studies demonstrate that the specialized DNA polymerase kappa (polkappa) is uniquely and preferentially expressed in the adrenal cortex and testis of the mouse, as well as in a variety of other tissues. The adrenal cortex is the sole site of detectable expression of the Polkappa gene in mouse embryos. This adrenal expression pattern is consistent with a requirement for polkappa for the replicative bypass of DNA base damage generated during steroid biosynthesis. The expression pattern of polkappa in the testis is specific for particular stages of spermatogenesis and is distinct from the expression pattern of several other low fidelity DNA polymerases that are also expressed during spermatogenesis. The mouse (but not the human) Polkappa gene is primarily regulated by the p53 gene and is upregulated in response to exposure to various DNA-damaging agents in a p53-dependent manner.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Velasco-Miguel S,Richardson JA,Gerlach VL,Lai WC,Gao T,Russell LD,Hladik CL,White CL,Friedberg EC

doi

10.1016/s1568-7864(02)00189-1

keywords:

subject

Has Abstract

pub_date

2003-01-02 00:00:00

pages

91-106

issue

1

eissn

1568-7864

issn

1568-7856

pii

S1568786402001891

journal_volume

2

pub_type

杂志文章
  • Oxidative DNA damage repair in mammalian cells: a new perspective.

    abstract::Oxidatively induced DNA lesions have been implicated in the etiology of many diseases (including cancer) and in aging. Repair of oxidatively damaged bases in all organisms occurs primarily via the DNA base excision repair (BER) pathway, initiated with their excision by DNA glycosylases. Only two mammalian DNA glycosyl...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2006.10.011

    authors: Hazra TK,Das A,Das S,Choudhury S,Kow YW,Roy R

    更新日期:2007-04-01 00:00:00

  • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    abstract::In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.03.009

    authors: Lingaraju GM,Prota AE,Winkler FK

    更新日期:2009-07-04 00:00:00

  • Non-homologous end joining often uses microhomology: implications for alternative end joining.

    abstract::Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2bp of microhomology (MH) between the two DNA termini. Thus, M...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.02.006

    authors: Pannunzio NR,Li S,Watanabe G,Lieber MR

    更新日期:2014-05-01 00:00:00

  • Transcriptional responses to DNA damage.

    abstract::In response to the threat of DNA damage, cells exhibit a dramatic and multi-factorial response spanning from transcriptional changes to protein modifications, collectively known as the DNA damage response (DDR). Here, we review the literature surrounding the transcriptional response to DNA damage. We review difference...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2019.05.002

    authors: Silva E,Ideker T

    更新日期:2019-07-01 00:00:00

  • Dual DNA-binding domains shape the interaction of Brh2 with DNA.

    abstract::Brh2, the BRCA2 ortholog in the fungus Ustilago maydis, harbors two different DNA-binding domains, one located in the N-terminal region and the other located in the C-terminal region. Here we were interested in comparing the biochemical properties of Brh2 fragments, Brh2(NT) and Brh2(CT), respectively, harboring the t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.07.013

    authors: Zhou Q,Holloman WK

    更新日期:2014-10-01 00:00:00

  • Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair.

    abstract::Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of thi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2018.02.010

    authors: Trasviña-Arenas CH,Baruch-Torres N,Cordoba-Andrade FJ,Ayala-García VM,García-Medel PL,Díaz-Quezada C,Peralta-Castro A,Ordaz-Ortiz JJ,Brieba LG

    更新日期:2018-05-01 00:00:00

  • In vitro chromatin templates to study nucleotide excision repair.

    abstract::In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.09.026

    authors: Liu X

    更新日期:2015-12-01 00:00:00

  • Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint.

    abstract::The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.07.008

    authors: Majka J,Burgers PM

    更新日期:2005-09-28 00:00:00

  • Molecular characterization and developmental expression of the TFIIH factor p62 gene from Drosophila melanogaster: effects on the UV light sensitivity of a p62 mutant fly.

    abstract::TFIIH is a multiprotein complex that has a central role in the RNA pol II mediated transcription, in DNA repair and in the control of the cell cycle. Mutations in some components of TFIIH are associated with three hereditary human syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (T...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00012-5

    authors: Castro J,Merino C,Zurita M

    更新日期:2002-05-30 00:00:00

  • Rothmund-Thomson syndrome helicase, RECQ4: on the crossroad between DNA replication and repair.

    abstract::RECQ proteins are conserved DNA helicases in both prokaryotes and eukaryotes. The importance of the RECQ family helicases in human health is demonstrated by their roles as cancer suppressors that are vital for preserving genome integrity. Mutations in one of the RECQ family proteins, RECQ4, not only result in developm...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2010.01.006

    authors: Liu Y

    更新日期:2010-03-02 00:00:00

  • Multiple uracil-DNA glycosylase activities in Deinococcus radiodurans.

    abstract::The extremely radiation resistant bacterium, Deinococcus radiodurans, contains a spectrum of genes that encode for multiple activities that repair DNA damage. We have cloned and expressed the product of three predicted uracil-DNA glycosylases to determine their biochemical function. DR0689 is a homologue of the Escher...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2003.10.011

    authors: Sandigursky M,Sandigursky S,Sonati P,Daly MJ,Franklin WA

    更新日期:2004-02-03 00:00:00

  • Caenorhabditis elegans APN-1 plays a vital role in maintaining genome stability.

    abstract::We previously showed that Caenorhabditis elegans APN-1, the only metazoan apurinic/apyrimidinc (AP) endonuclease belonging to the endonuclease IV family, can functionally rescue the DNA repair defects of Saccharomyces cerevisiae mutants completely lacking AP endonuclease/3'-diesterase activities. While this complement...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.11.007

    authors: Zakaria C,Kassahun H,Yang X,Labbé JC,Nilsen H,Ramotar D

    更新日期:2010-02-04 00:00:00

  • Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases.

    abstract::The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.11.011

    authors: Zanotti KJ,Gearhart PJ

    更新日期:2016-02-01 00:00:00

  • Telomeres and chromosome instability.

    abstract::Genomic instability has been proposed to play an important role in cancer by accelerating the accumulation of genetic changes responsible for cancer cell evolution. One mechanism for chromosome instability is through the loss of telomeres, which are DNA-protein complexes that protect the ends of chromosomes and preven...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2006.05.030

    authors: Murnane JP

    更新日期:2006-09-08 00:00:00

  • Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases.

    abstract::Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critic...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2009.01.011

    authors: Hannah J,Zhou P

    更新日期:2009-04-05 00:00:00

  • Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    abstract::DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this p...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.019

    authors: Shima N,Pederson KD

    更新日期:2017-08-01 00:00:00

  • Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis.

    abstract::Double-strand breaks in genomic DNA (DSB) are potentially lethal lesions which separate parts of chromosome arms from their centromeres. Repair of DSB by recombination can generate mutations and further chromosomal rearrangements, making the regulation of recombination and the choice of recombination pathways of the h...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.04.002

    authors: Charbonnel C,Allain E,Gallego ME,White CI

    更新日期:2011-06-10 00:00:00

  • RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae.

    abstract::Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.02.003

    authors: Pannunzio NR,Manthey GM,Bailis AM

    更新日期:2008-05-03 00:00:00

  • Enhanced gene amplification in human cells knocked down for DNA-PKcs.

    abstract::Gene amplification, a key mechanism for oncogene activation and drug resistance in tumour cells, involves the generation and joining of DNA double-strand breaks. Amplified DNA can be carried either on intra-chromosomal arrays or on extra-chromosomal elements (double minutes). We previously showed that, in rodent cells...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.08.015

    authors: Salzano A,Kochiashvili N,Nergadze SG,Khoriauli L,Smirnova A,Ruiz-Herrera A,Mondello C,Giulotto E

    更新日期:2009-01-01 00:00:00

  • DNA-damage response in the basidiomycete fungus Ustilago maydis relies in a sole Chk1-like kinase.

    abstract::Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at l...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.01.023

    authors: Pérez-Martín J

    更新日期:2009-06-04 00:00:00

  • Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis.

    abstract::Reactive oxygen species drive the oxidation of guanine to 8-oxoguanine (8oxoG), which threatens genome integrity. The repair of 8oxoG is carried out by base excision repair enzymes in Bacteria and Eukarya, however, little is known about archaeal 8oxoG repair. This study identifies a member of the Ogg-subfamily archaea...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102767

    authors: Gehring AM,Zatopek KM,Burkhart BW,Potapov V,Santangelo TJ,Gardner AF

    更新日期:2020-02-01 00:00:00

  • A PIAS-ed view of DNA double strand break repair focuses on SUMO.

    abstract::Through the action of multiple sensors, mediators, and effectors, the DNA damage response (DDR) orchestrates the repair of DNA damage to ensure maintenance of genomic integrity. Recently, in addition to phosphorylation, other post-translational modifications such as ubiquitylation and SUMOylation have emerged as impor...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2010.02.003

    authors: Zlatanou A,Stewart GS

    更新日期:2010-05-04 00:00:00

  • DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms.

    abstract::In both replicating and non-replicating cells, the maintenance of genomic stability is of utmost importance. Dividing cells can repair DNA damage during cell division, tolerate the damage by employing potentially mutagenic DNA polymerases or die via apoptosis. However, the options for accurate DNA repair are more limi...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2019.102669

    authors: Abugable AA,Morris JLM,Palminha NM,Zaksauskaite R,Ray S,El-Khamisy SF

    更新日期:2019-09-01 00:00:00

  • Preserving replication fork integrity and competence via the homologous recombination pathway.

    abstract::Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase co...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2018.08.017

    authors: Ait Saada A,Lambert SAE,Carr AM

    更新日期:2018-11-01 00:00:00

  • Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.

    abstract::Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.01.001

    authors: Jin J,Hwang BJ,Chang PW,Toth EA,Lu AL

    更新日期:2014-03-01 00:00:00

  • Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination.

    abstract::Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for sp...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.07.004

    authors: Wang G,Maier RJ

    更新日期:2017-09-01 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • The role of the DNA damage response in neuronal development, organization and maintenance.

    abstract::The DNA damage response is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cel...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2008.03.005

    authors: Barzilai A,Biton S,Shiloh Y

    更新日期:2008-07-01 00:00:00

  • Protein ADP-ribosylation and the cellular response to DNA strand breaks.

    abstract::DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt g...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.03.021

    authors: Caldecott KW

    更新日期:2014-07-01 00:00:00

  • Chromosome integrity at a double-strand break requires exonuclease 1 and MRX.

    abstract::The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.10.004

    authors: Nakai W,Westmoreland J,Yeh E,Bloom K,Resnick MA

    更新日期:2011-01-02 00:00:00