In vitro chromatin templates to study nucleotide excision repair.

Abstract:

:In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Liu X

doi

10.1016/j.dnarep.2015.09.026

subject

Has Abstract

pub_date

2015-12-01 00:00:00

pages

68-76

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(15)00196-2

journal_volume

36

pub_type

杂志文章,评审
  • The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression.

    abstract::The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103036

    authors: Malakoti F,Alemi F,Younesi S,Majidinia M,Yousefi B,Morovat P,Khelghati N,Maleki M,Karimian A,Asemi Z

    更新日期:2021-01-07 00:00:00

  • Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage.

    abstract::We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00108-8

    authors: Fukumoto Y,Hiyama H,Yokoi M,Nakaseko Y,Yanagida M,Hanaoka F

    更新日期:2002-10-01 00:00:00

  • High levels of oxidatively generated DNA damage 8,5'-cyclo-2'-deoxyadenosine accumulate in the brain tissues of xeroderma pigmentosum group A gene-knockout mice.

    abstract::Xeroderma pigmentosum (XP) is a genetic disorder associated with defects in nucleotide excision repair, a pathway that eliminates a wide variety of helix-distorting DNA lesions, including ultraviolet-induced pyrimidine dimers. In addition to skin diseases in sun-exposed areas, approximately 25% of XP patients develop ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.004

    authors: Mori T,Nakane H,Iwamoto T,Krokidis MG,Chatgilialoglu C,Tanaka K,Kaidoh T,Hasegawa M,Sugiura S

    更新日期:2019-08-01 00:00:00

  • Both replication bypass fidelity and repair efficiency influence the yield of mutations per target dose in intact mammalian cells induced by benzo[a]pyrene-diol-epoxide and dibenzo[a,l]pyrene-diol-epoxide.

    abstract::Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenz...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.03.022

    authors: Lagerqvist A,Håkansson D,Prochazka G,Lundin C,Dreij K,Segerbäck D,Jernström B,Törnqvist M,Seidel A,Erixon K,Jenssen D

    更新日期:2008-08-02 00:00:00

  • Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination.

    abstract::Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for sp...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.07.004

    authors: Wang G,Maier RJ

    更新日期:2017-09-01 00:00:00

  • Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates.

    abstract::Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of th...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.02.001

    authors: Ahluwalia D,Bienstock RJ,Schaaper RM

    更新日期:2012-05-01 00:00:00

  • Dynamics of mammalian NER proteins.

    abstract::Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms tha...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2011.04.015

    authors: Vermeulen W

    更新日期:2011-07-15 00:00:00

  • Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases.

    abstract::The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.11.011

    authors: Zanotti KJ,Gearhart PJ

    更新日期:2016-02-01 00:00:00

  • Catalytic mechanism of human DNA polymerase lambda with Mg2+ and Mn2+ from ab initio quantum mechanical/molecular mechanical studies.

    abstract::DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase lambda (Pollambda...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.07.007

    authors: Cisneros GA,Perera L,García-Díaz M,Bebenek K,Kunkel TA,Pedersen LG

    更新日期:2008-11-01 00:00:00

  • Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints.

    abstract::Primary human somatic cells grown in culture divide a finite number of times, exhibiting progressive changes in metabolism and morphology before cessation of cycling. This telomere-initiated cellular senescence occurs because cells have halted production of telomerase, a DNA polymerase required for stabilization of ch...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.10.003

    authors: Becerra SC,Thambugala HT,Erickson AR,Lee CK,Lewis LK

    更新日期:2012-01-02 00:00:00

  • Cross-species inhibition of dUTPase via the Staphylococcal Stl protein perturbs dNTP pool and colony formation in Mycobacterium.

    abstract::Proteins responsible for the integrity of the genome are often used targets in drug therapies against various diseases. The inhibitors of these proteins are also important to study the pathways in genome integrity maintenance. A prominent example is Ugi, a well known cross-species inhibitor protein of the enzyme uraci...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.03.005

    authors: Hirmondó R,Szabó JE,Nyíri K,Tarjányi S,Dobrotka P,Tóth J,Vértessy BG

    更新日期:2015-06-01 00:00:00

  • Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    abstract::A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory elemen...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2006.05.015

    authors: Marculescu R,Vanura K,Montpellier B,Roulland S,Le T,Navarro JM,Jäger U,McBlane F,Nadel B

    更新日期:2006-09-08 00:00:00

  • The hidden side of unstable DNA repeats: Mutagenesis at a distance.

    abstract::Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also caus...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.020

    authors: Shah KA,Mirkin SM

    更新日期:2015-08-01 00:00:00

  • Promoter methylation of O(6)-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53.

    abstract::Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with w...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.016

    authors: Lai JC,Cheng YW,Goan YG,Chang JT,Wu TC,Chen CY,Lee H

    更新日期:2008-08-02 00:00:00

  • A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

    abstract::Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.01.015

    authors: Georgescu R,Langston L,O'Donnell M

    更新日期:2015-05-01 00:00:00

  • Protein ADP-ribosylation and the cellular response to DNA strand breaks.

    abstract::DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt g...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.03.021

    authors: Caldecott KW

    更新日期:2014-07-01 00:00:00

  • Exo1 independent DNA mismatch repair involves multiple compensatory nucleases.

    abstract::Functional DNA mismatch repair (MMR) is essential for maintaining the fidelity of DNA replication and genetic stability. In hematopoiesis, loss of MMR results in methylating agent resistance and a hematopoietic stem cell (HSC) repopulation defect. Additionally MMR failure is associated with a variety of human malignan...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.06.005

    authors: Desai A,Gerson S

    更新日期:2014-09-01 00:00:00

  • Non-homologous end joining often uses microhomology: implications for alternative end joining.

    abstract::Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2bp of microhomology (MH) between the two DNA termini. Thus, M...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.02.006

    authors: Pannunzio NR,Li S,Watanabe G,Lieber MR

    更新日期:2014-05-01 00:00:00

  • The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs.

    abstract::The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosph...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.09.008

    authors: Lebedeva NA,Rechkunova NI,Ishchenko AA,Saparbaev M,Lavrik OI

    更新日期:2013-12-01 00:00:00

  • Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival.

    abstract::PriA, a 3'-->5' superfamily 2 DNA helicase, acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. The ability of PriA to initiate replication at stalled forked structures ensures complete genome replication and helps to protect the...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2009.12.009

    authors: Gabbai CB,Marians KJ

    更新日期:2010-03-02 00:00:00

  • Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity.

    abstract::Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadm...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.005

    authors: Serero A,Lopes J,Nicolas A,Boiteux S

    更新日期:2008-08-02 00:00:00

  • Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities.

    abstract::Base excision repair of oxidized DNA in human cells is initiated by several DNA glycosylases with overlapping substrate specificity. The human endonuclease VIII homologue NEIL1 removes a broad spectrum of oxidized pyrimidine and purine lesions. In this study of NEIL1 we have identified several key residues, located in...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.07.002

    authors: Vik ES,Alseth I,Forsbring M,Helle IH,Morland I,Luna L,Bjørås M,Dalhus B

    更新日期:2012-09-01 00:00:00

  • Validation of XP-C pathogenic variations in archival material from a live XP patient.

    abstract::Xeroderma pigmentosum (XP) genetic complementation group C (XP-C) is the most common form of the disease worldwide. Thirty-four distinct genetic defects have been identified in 45 XP-C patients. Further identification of such defects and the frequency of their occurrence offers the potential of generating diagnostic a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.09.009

    authors: McDaniel LD,Rivera-Begeman A,Doughty AT,Schultz RA,Friedberg EC

    更新日期:2007-01-04 00:00:00

  • CtIP: A DNA damage response protein at the intersection of DNA metabolism.

    abstract::The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.016

    authors: Makharashvili N,Paull TT

    更新日期:2015-08-01 00:00:00

  • Measurement of DNA damage in peripheral blood by the γ-H2AX assay as predictor of colorectal cancer risk.

    abstract::The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher level...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.03.001

    authors: Zhao L,Chang DW,Gong Y,Eng C,Wu X

    更新日期:2017-05-01 00:00:00

  • The 8-oxoguanine DNA glycosylase 1 (ogg1) decreases the vulnerability of the developing brain to DNA damage.

    abstract::The developing brain is particularly vulnerable to oxidative DNA damage, which may be the cause of most major congenital mental anomalies. The repair enzyme ogg1 initiates the highly conserved base-excision repair pathway. However, its function in the embryonic brain is largely unknown. This study is the first to vali...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.018

    authors: Gu A,Ji G,Yan L,Zhou Y

    更新日期:2013-12-01 00:00:00

  • Alleles of newly identified barley gene HvPARP3 exhibit changes in efficiency of DNA repair.

    abstract::Genome integrity is constantly challenged by endo- and exogenous DNA-damaging factors. The influence of genotoxic agents causes an accumulation of DNA lesions, which if not repaired, become mutations that can cause various abnormalities in a cell metabolism. The main pathway of DSB repair, which is based on non-homolo...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.02.018

    authors: Stolarek M,Gruszka D,Braszewska-Zalewska A,Maluszynski M

    更新日期:2015-04-01 00:00:00

  • Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems.

    abstract::We studied how DNA divergence between recombining DNAs and the mismatch repair system modulate the SOS response in Escherichia coli. The observed positive log-linear correlation between SOS induction and DNA divergence, and the negative correlation between SOS induction and frequency of recombination, suggest that the...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.09.008

    authors: Delmas S,Matic I

    更新日期:2005-02-03 00:00:00

  • Impaired spermatogenesis and elevated spontaneous tumorigenesis in xeroderma pigmentosum group A gene (Xpa)-deficient mice.

    abstract::We have reported that xeroderma pigmentosum group A (Xpa) gene-knockout mice [Xpa (-/-) mice] are deficient in nucleotide excision repair (NER) and highly sensitive to UV-induced skin carcinogenesis. Although xeroderma pigmentosum group A patients show growth retardation, immature sexual development, and neurological ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.08.003

    authors: Nakane H,Hirota S,Brooks PJ,Nakabeppu Y,Nakatsu Y,Nishimune Y,Iino A,Tanaka K

    更新日期:2008-12-01 00:00:00

  • The role of DNA repair in brain related disease pathology.

    abstract::Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2013.04.010

    authors: Canugovi C,Misiak M,Ferrarelli LK,Croteau DL,Bohr VA

    更新日期:2013-08-01 00:00:00