DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms.

Abstract:

:In both replicating and non-replicating cells, the maintenance of genomic stability is of utmost importance. Dividing cells can repair DNA damage during cell division, tolerate the damage by employing potentially mutagenic DNA polymerases or die via apoptosis. However, the options for accurate DNA repair are more limited in non-replicating neuronal cells. If DNA damage is left unresolved, neuronal cells die causing neurodegenerative disorders. A number of pathogenic variants of DNA repair proteins have been linked to multiple neurological diseases. The current challenge is to harness our knowledge of fundamental properties of DNA repair to improve diagnosis, prognosis and treatment of such debilitating disorders. In this perspective, we will focus on recent efforts in identifying novel DNA repair biomarkers for the diagnosis of neurological disorders and their use in monitoring the patient response to therapy. These efforts are greatly facilitated by the development of model organisms such as zebrafish, which will also be summarised.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Abugable AA,Morris JLM,Palminha NM,Zaksauskaite R,Ray S,El-Khamisy SF

doi

10.1016/j.dnarep.2019.102669

subject

Has Abstract

pub_date

2019-09-01 00:00:00

pages

102669

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(19)30222-8

journal_volume

81

pub_type

杂志文章,评审
  • One ring to bring them all--the role of Ku in mammalian non-homologous end joining.

    abstract::The repair of DNA double strand breaks is essential for cell survival and several conserved pathways have evolved to ensure their rapid and efficient repair. The non-homologous end joining pathway is initiated when Ku binds to the DNA break site. Ku is an abundant nuclear heterodimer of Ku70 and Ku80 with a toroidal s...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.02.019

    authors: Grundy GJ,Moulding HA,Caldecott KW,Rulten SL

    更新日期:2014-05-01 00:00:00

  • Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2.

    abstract::In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.11.008

    authors: Wu W,Wang M,Wu W,Singh SK,Mussfeldt T,Iliakis G

    更新日期:2008-02-01 00:00:00

  • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    abstract::In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.03.009

    authors: Lingaraju GM,Prota AE,Winkler FK

    更新日期:2009-07-04 00:00:00

  • The splicing component ISY1 regulates APE1 in base excision repair.

    abstract::The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the remov...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102769

    authors: Jaiswal AS,Williamson EA,Srinivasan G,Kong K,Lomelino CL,McKenna R,Walter C,Sung P,Narayan S,Hromas R

    更新日期:2020-02-01 00:00:00

  • Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.

    abstract::Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.01.001

    authors: Jin J,Hwang BJ,Chang PW,Toth EA,Lu AL

    更新日期:2014-03-01 00:00:00

  • Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    abstract::Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.07.009

    authors: Kato M,Lin SJ

    更新日期:2014-11-01 00:00:00

  • A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation.

    abstract::Both UVB radiation and DNA-breaking agents were previously reported to kill Arabidopsis stem cells. We demonstrate that death induced by UVB or by ionizing radiation (IR) requires Suppressor of Gamma Response 1 (SOG1), a transcription factor already found to govern many responses to these agents in Arabidopsis. DNA-da...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.06.006

    authors: Furukawa T,Curtis MJ,Tominey CM,Duong YH,Wilcox BW,Aggoune D,Hays JB,Britt AB

    更新日期:2010-09-04 00:00:00

  • In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination.

    abstract::We have used the recently determined crystal structures of Escherichia coli (E. coli) MutS, MutL and MutH to guide construction of 47 amino-acid substitutions in these proteins and analyzed their behavior in mismatch repair and recombination in vitro and in vivo. We find that the active site of the MutH endonuclease i...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00245-8

    authors: Junop MS,Yang W,Funchain P,Clendenin W,Miller JH

    更新日期:2003-04-02 00:00:00

  • Bacillus subtilis DisA helps to circumvent replicative stress during spore revival.

    abstract::The mechanisms that allow to circumvent replicative stress, and to resume DNA synthesis are poorly understood in Bacillus subtilis. To study the role of the diadenylate cyclase DisA and branch migration translocase (BMT) RadA/Sms in restarting a stalled replication fork, we nicked and broke the circular chromosome of ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.09.006

    authors: Raguse M,Torres R,Seco EM,Gándara C,Ayora S,Moeller R,Alonso JC

    更新日期:2017-11-01 00:00:00

  • Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding.

    abstract::Humans have five members of the well conserved RecQ helicase family: RecQ1, Bloom syndrome protein (BLM), Werner syndrome protein (WRN), RecQ4, and RecQ5, which are all known for their roles in maintaining genome stability. BLM, WRN, and RecQ4 are associated with premature aging and cancer predisposition. Of the three...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.04.003

    authors: Rossi ML,Ghosh AK,Kulikowicz T,Croteau DL,Bohr VA

    更新日期:2010-07-01 00:00:00

  • Repair of UV lesions in nucleosomes--intrinsic properties and remodeling.

    abstract::Nucleotide excision repair and reversal of pyrimidine dimers by photolyase (photoreactivation) are two major pathways to remove UV-lesions from DNA. Here, it is discussed how lesions are recognized and removed when the DNA is condensed into nucleosomes. During the recent years it was shown that nucleosomes inhibit pho...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2005.04.005

    authors: Thoma F

    更新日期:2005-07-28 00:00:00

  • Measurement of DNA damage in peripheral blood by the γ-H2AX assay as predictor of colorectal cancer risk.

    abstract::The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher level...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.03.001

    authors: Zhao L,Chang DW,Gong Y,Eng C,Wu X

    更新日期:2017-05-01 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • An improved method for the detection of nucleotide excision repair factors at local UV DNA damage sites.

    abstract::Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclea...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.01.005

    authors: Dutto I,Cazzalini O,Stivala LA,Prosperi E

    更新日期:2017-03-01 00:00:00

  • Lack of the DNA glycosylases MYH and OGG1 in the cancer prone double mutant mouse does not increase mitochondrial DNA mutagenesis.

    abstract::Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.12.001

    authors: Halsne R,Esbensen Y,Wang W,Scheffler K,Suganthan R,Bjørås M,Eide L

    更新日期:2012-03-01 00:00:00

  • The role of DNA repair in brain related disease pathology.

    abstract::Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2013.04.010

    authors: Canugovi C,Misiak M,Ferrarelli LK,Croteau DL,Bohr VA

    更新日期:2013-08-01 00:00:00

  • Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II.

    abstract::8-Oxoguanine (8-oxoG) is a major oxidative lesion produced in DNA by normal cellular metabolism or after exposure to exogenous sources such as ionizing radiation. Persistence of this lesion in DNA causes G to T transversions, with deleterious consequences for the cell. As a result, several repair processes have evolve...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.01.003

    authors: Tornaletti S,Maeda LS,Kolodner RD,Hanawalt PC

    更新日期:2004-05-04 00:00:00

  • Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae.

    abstract::In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mut...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00115-0

    authors: Mallory JC,Bashkirov VI,Trujillo KM,Solinger JA,Dominska M,Sung P,Heyer WD,Petes TD

    更新日期:2003-09-18 00:00:00

  • Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence.

    abstract::Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2018.11.010

    authors: Burra S,Marasco D,Malfatti MC,Antoniali G,Virgilio A,Esposito V,Demple B,Galeone A,Tell G

    更新日期:2019-01-01 00:00:00

  • Validation of XP-C pathogenic variations in archival material from a live XP patient.

    abstract::Xeroderma pigmentosum (XP) genetic complementation group C (XP-C) is the most common form of the disease worldwide. Thirty-four distinct genetic defects have been identified in 45 XP-C patients. Further identification of such defects and the frequency of their occurrence offers the potential of generating diagnostic a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.09.009

    authors: McDaniel LD,Rivera-Begeman A,Doughty AT,Schultz RA,Friedberg EC

    更新日期:2007-01-04 00:00:00

  • Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.

    abstract::If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is respon...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.010

    authors: Bilotti K,Kennedy EE,Li C,Delaney S

    更新日期:2017-11-01 00:00:00

  • Base excision repair and nucleotide excision repair contribute to the removal of N-methylpurines from active genes.

    abstract::Many different cellular pathways have evolved to protect the genome from the deleterious effects of DNA damage that result from exposure to chemical and physical agents. Among these is a process called transcription-coupled repair (TCR) that catalyzes the removal of DNA lesions from the transcribed strand of expressed...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00075-7

    authors: Plosky B,Samson L,Engelward BP,Gold B,Schlaen B,Millas T,Magnotti M,Schor J,Scicchitano DA

    更新日期:2002-08-06 00:00:00

  • Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572.

    abstract::Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.12.011

    authors: Cao Z,Julin DA

    更新日期:2009-05-01 00:00:00

  • The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.

    abstract::DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated P...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.02.016

    authors: Ball LG,Xu X,Blackwell S,Hanna MD,Lambrecht AD,Xiao W

    更新日期:2014-04-01 00:00:00

  • The Werner syndrome protein confers resistance to the DNA lesions N3-methyladenine and O6-methylguanine: implications for WRN function.

    abstract::The Werner syndrome (WS) protein (WRN), a DNA helicase/exonuclease, is required for genomic stability and avoidance of cancer. Current evidence suggests that WRN is involved in the resolution of stalled and/or collapsed replication forks. This function is indicated, in part, by replication defects in WS cells and by h...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.02.003

    authors: Blank A,Bobola MS,Gold B,Varadarajan S,D Kolstoe D,Meade EH,Rabinovitch PS,Loeb LA,Silber JR

    更新日期:2004-06-03 00:00:00

  • Mutant cells defective in DNA repair pathways provide a sensitive high-throughput assay for genotoxicity.

    abstract::Chemicals used industrially and commercially are required by law to be assessed for their genotoxic potential. However, all currently used assays have major limitations and despite intense effort, there is no universal agreement on which tests should be employed, or how to interpret results. We have developed a new as...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2010.09.017

    authors: Evans TJ,Yamamoto KN,Hirota K,Takeda S

    更新日期:2010-12-10 00:00:00

  • A second life in science--working after the age of 65.

    abstract::I was born in January, 1921 and was fortunate in working for a research organization that had no fixed retirement age. I was permitted to continue Science as long as there were some resources to support research that had some relevance to the organization's goals. A number of projects on which I worked were continuati...

    journal_title:DNA repair

    pub_type: 历史文章,杂志文章

    doi:10.1016/j.dnarep.2003.04.002

    authors: Setlow RB

    更新日期:2004-04-01 00:00:00

  • Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.

    abstract::Transcription factor II H (TFIIH) is composed of core TFIIH and Cdk-activating kinase (CAK) complexes. Besides transcription, TFIIH also participates in nucleotide excision repair (NER), verifying DNA lesions through its helicase components XPB and XPD. The assembly state of TFIIH is known to be affected by truncation...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.09.003

    authors: Zhu Q,Wani G,Sharma N,Wani A

    更新日期:2012-12-01 00:00:00

  • PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation.

    abstract::The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.02.006

    authors: Wiese C,Rudolph JH,Jakob B,Fink D,Tobias F,Blattner C,Taucher-Scholz G

    更新日期:2012-05-01 00:00:00

  • The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs.

    abstract::The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosph...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.09.008

    authors: Lebedeva NA,Rechkunova NI,Ishchenko AA,Saparbaev M,Lavrik OI

    更新日期:2013-12-01 00:00:00