Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2.

Abstract:

:In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of these pathways is being actively investigated. We examine DSB repair in unperturbed G1 and G2 phase cells using mouse embryo fibroblast (MEF) mutants defective in D-NHEJ and/or HRR. WT and Rad54(-/-) MEFs repair DSBs with similar efficiency in G1 and G2 phase. LIG4(-/-), DNA-PKcs(-/-), and Ku70(-/-) MEFs show more pronounced repair defects in G1 than in G2. LIG4(-/-)/Rad54(-/-) MEFs repair DSBs as efficiently as LIG4(-/-) MEFs suggesting that the increased repair efficiency in G2 relies on enhanced function of B-NHEJ rather than HRR. In vivo and in vitro plasmid end joining assays confirm an enhanced function of B-NHEJ in G2. The results show a new and potentially important cell cycle regulation of B-NHEJ and generate a framework to investigate the mechanistic basis of HRR contribution to DSB repair.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Wu W,Wang M,Wu W,Singh SK,Mussfeldt T,Iliakis G

doi

10.1016/j.dnarep.2007.11.008

subject

Has Abstract

pub_date

2008-02-01 00:00:00

pages

329-38

issue

2

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(07)00388-6

journal_volume

7

pub_type

杂志文章
  • Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures.

    abstract::Oxidative stress via redox reactions can regulate DNA repair pathways. The base excision repair (BER) enzyme apurinic/apyrimidinic endonuclease 1 (APE1) is a key player in the redox regulation of DNA repair. Environmental factors can alter the methylation of DNA repair genes, change their expression and thus modulate ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.03.011

    authors: Langie SA,Kowalczyk P,Tomaszewski B,Vasilaki A,Maas LM,Moonen EJ,Palagani A,Godschalk RW,Tudek B,van Schooten FJ,Berghe WV,Zabielski R,Mathers JC

    更新日期:2014-06-01 00:00:00

  • A der(8)t(8;11) chromosome in the Karpas-620 myeloma cell line expresses only cyclin D1: yet both cyclin D1 and MYC are repositioned in close proximity to the 3'IGH enhancer.

    abstract::The Karpas-620 human myeloma cell line (HMCL) expresses high levels of Cyclin D1 (CCND1), but has a der(8)t(8;11) and a der(14)t(8;14), and not a conventional t(11;14). Fluorescent in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) studies suggest that der(14)t(11;14) from a primary transl...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.11.010

    authors: Dib A,Glebov OK,Shou Y,Singer RH,Kuehl WM

    更新日期:2009-03-01 00:00:00

  • Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster.

    abstract::RecQ5 belongs to the RecQ DNA helicase family that includes genes causative of Bloom, Werner, and Rothmund-Thomson syndromes. Although no human disease has been genetically linked to a mutation in RecQ5, Drosophila melanogaster RecQ5 is highly expressed in early embryos, suggesting an important role for it in the DNA ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.10.007

    authors: Nakayama M,Yamaguchi S,Sagisu Y,Sakurai H,Ito F,Kawasaki K

    更新日期:2009-02-01 00:00:00

  • Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease.

    abstract::Mammalian cells have evolved sophisticated DNA repair systems to correct mispaired or damaged bases and extrahelical loops. Emerging evidence suggests that, in some cases, the normal DNA repair machinery is "hijacked" to become a causative factor in mutation and disease, rather than act as a safeguard of genomic integ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2008.03.013

    authors: McMurray CT

    更新日期:2008-07-01 00:00:00

  • Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes.

    abstract::OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes,...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.005

    authors: Seifermann M,Ulges A,Bopp T,Melcea S,Schäfer A,Oka S,Nakabeppu Y,Klungland A,Niehrs C,Epe B

    更新日期:2017-10-01 00:00:00

  • DNA mismatch repair mediates protection from mutagenesis induced by short-wave ultraviolet light.

    abstract::To investigate involvement of DNA mismatch repair in the response to short-wave ultraviolet (UVC) light, we compared UVC-induced mutant frequencies and mutational spectra at the Hprt gene between wild type and mismatch-repair-deficient mouse embryonic stem (ES) cells. Whereas mismatch repair gene status did not signif...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.06.005

    authors: Borgdorff V,Pauw B,van Hees-Stuivenberg S,de Wind N

    更新日期:2006-11-08 00:00:00

  • Repair of the mutagenic DNA oxidation product, 5-formyluracil.

    abstract::The oxidation of the thymine methyl group can generate 5-formyluracil (FoU). Template FoU residues are known to miscode, generating base substitution mutations. The repair of the FoU lesion is therefore important in minimizing mutations induced by DNA oxidation. We have studied the repair of FoU in synthetic oligonucl...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00198-2

    authors: Liu P,Burdzy A,Sowers LC

    更新日期:2003-02-03 00:00:00

  • Is RecG a general guardian of the bacterial genome?

    abstract::The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched DNAs in vitro, including Holliday junctions, replication forks, D-loops and R-loops. Coupled with the reported pleiotropy of recG mutations, this broad range of potential targets has made it hard to pin down wh...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2009.12.014

    authors: Rudolph CJ,Upton AL,Briggs GS,Lloyd RG

    更新日期:2010-03-02 00:00:00

  • Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint.

    abstract::The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.07.008

    authors: Majka J,Burgers PM

    更新日期:2005-09-28 00:00:00

  • Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes.

    abstract::Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-ind...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.08.008

    authors: van Oosten M,Stout GJ,Backendorf C,Rebel H,de Wind N,Darroudi F,van Kranen HJ,de Gruijl FR,Mullenders LH

    更新日期:2005-01-02 00:00:00

  • Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa.

    abstract::Interaction between MutS and the replication factor β clamp has been extensively studied in a Mismatch Repair context; however, its functional consequences are not well understood. We have analyzed the role of the MutS-β clamp interaction in Pseudomonas aeruginosa by characterizing a β clamp binding motif mutant, deno...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.01.015

    authors: Monti MR,Miguel V,Borgogno MV,Argaraña CE

    更新日期:2012-05-01 00:00:00

  • Influence of XPB helicase on recruitment and redistribution of nucleotide excision repair proteins at sites of UV-induced DNA damage.

    abstract::The XPB DNA helicase, a subunit of the basal transcription factor TFIIH, is also involved in nucleotide excision repair (NER). We examined recruitment of NER proteins in XP-B cells from patients with mild or severe xeroderma pigmentosum (XP) having different XPB mutations using local UV-irradiation through filters wit...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.03.025

    authors: Oh KS,Imoto K,Boyle J,Khan SG,Kraemer KH

    更新日期:2007-09-01 00:00:00

  • RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.

    abstract::RAre DAmage and Repair sequencing (RADAR-seq) is a highly adaptable sequencing method that enables the identification and detection of rare DNA damage events for a wide variety of DNA lesions at single-molecule resolution on a genome-wide scale. In RADAR-seq, DNA lesions are replaced with a patch of modified bases tha...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.06.007

    authors: Zatopek KM,Potapov V,Maduzia LL,Alpaslan E,Chen L,Evans TC Jr,Ong JL,Ettwiller LM,Gardner AF

    更新日期:2019-08-01 00:00:00

  • Ultra-violet light induced changes in DNA dynamics may enhance TT-dimer recognition.

    abstract::Short-wave ultra-violet light promotes the formation of DNA dimers between adjacent thymine bases, and if unrepaired these dimers may induce skin cancer. Living cells have a very robust repair system capable of repairing hundreds of lesions every day. Although many of the details of the dimer repair mechanism are know...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.04.007

    authors: Blagoev KB,Alexandrov BS,Goodwin EH,Bishop AR

    更新日期:2006-07-13 00:00:00

  • Recruitment and retention dynamics of RECQL5 at DNA double strand break sites.

    abstract::RECQL5 is one of the five human RecQ helicases, involved in the maintenance of genomic integrity. While much insight has been gained into the function of the Werner (WRN) and Bloom syndrome proteins (BLM), little is known about RECQL5. We have analyzed the recruitment and retention dynamics of RECQL5 at laser-induced ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.05.001

    authors: Popuri V,Ramamoorthy M,Tadokoro T,Singh DK,Karmakar P,Croteau DL,Bohr VA

    更新日期:2012-07-01 00:00:00

  • Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation.

    abstract::Deoxyinosine (dI) is produced in DNA by the hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the product of the nfi gene. The repair was studied in vivo using high-efficiency oligonucleotide transformation mediated by the Beta protein of ba...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.09.010

    authors: Weiss B

    更新日期:2008-02-01 00:00:00

  • Claspin, a regulator of Chk1 in DNA replication stress pathway.

    abstract::Regulation of the vertebrate checkpoint kinase Chk1 involves several protein complexes including the recently identified protein Claspin. Claspin associates with Chk1 upon replication stress and DNA damage and is required for Chk1 activation in both Xenopus and human systems. More importantly, Claspin is involved in r...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2004.03.001

    authors: Chini CC,Chen J

    更新日期:2004-08-01 00:00:00

  • Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572.

    abstract::Deinococcus radiodurans survives extremely high doses of ionizing and ultraviolet radiation and treatment with various DNA-damaging chemicals. As an effort to identify and characterize proteins that function in DNA repair in this organism, we have studied the protein encoded by locus DR1572. This gene is predicted to ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.12.011

    authors: Cao Z,Julin DA

    更新日期:2009-05-01 00:00:00

  • In vitro chromatin templates to study nucleotide excision repair.

    abstract::In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.09.026

    authors: Liu X

    更新日期:2015-12-01 00:00:00

  • Accumulation of 8-oxo-deoxyguanosine in cardiovascular tissues with the development of hypertension.

    abstract::Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in DNA is associated with mutagenesis and cell death. Little attention has been given to the biological significance of 8-oxo-dG accumulation in cardiovascular tissues during the different stage of hypertension and its prevention. We thus investigated the ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.01.003

    authors: Ohtsubo T,Ohya Y,Nakamura Y,Kansui Y,Furuichi M,Matsumura K,Fujii K,Iida M,Nakabeppu Y

    更新日期:2007-06-01 00:00:00

  • Dual DNA-binding domains shape the interaction of Brh2 with DNA.

    abstract::Brh2, the BRCA2 ortholog in the fungus Ustilago maydis, harbors two different DNA-binding domains, one located in the N-terminal region and the other located in the C-terminal region. Here we were interested in comparing the biochemical properties of Brh2 fragments, Brh2(NT) and Brh2(CT), respectively, harboring the t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.07.013

    authors: Zhou Q,Holloman WK

    更新日期:2014-10-01 00:00:00

  • Promoter methylation of O(6)-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53.

    abstract::Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with w...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.016

    authors: Lai JC,Cheng YW,Goan YG,Chang JT,Wu TC,Chen CY,Lee H

    更新日期:2008-08-02 00:00:00

  • Bypass of N²-ethylguanine by human DNA polymerase κ.

    abstract::The efficiency and fidelity of nucleotide incorporation and next-base extension by DNA polymerase (pol) κ past N(2)-ethyl-Gua were measured using steady-state and rapid kinetic analyses. DNA pol κ incorporated nucleotides and extended 3' termini opposite N(2)-ethyl-Gua with measured efficiencies and fidelities similar...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.09.007

    authors: Pence MG,Blans P,Zink CN,Fishbein JC,Perrino FW

    更新日期:2011-01-02 00:00:00

  • Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination.

    abstract::Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for sp...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.07.004

    authors: Wang G,Maier RJ

    更新日期:2017-09-01 00:00:00

  • Catalytic mechanism of human DNA polymerase lambda with Mg2+ and Mn2+ from ab initio quantum mechanical/molecular mechanical studies.

    abstract::DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase lambda (Pollambda...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.07.007

    authors: Cisneros GA,Perera L,García-Díaz M,Bebenek K,Kunkel TA,Pedersen LG

    更新日期:2008-11-01 00:00:00

  • Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites.

    abstract::Mononucleotide microsatellites are tandem repeats of a single base pair, abundant within coding exons and frequent sites of mutation in the human genome. Because the repeated unit is one base pair, multiple mechanisms of insertion/deletion (indel) mutagenesis are possible, including strand-slippage, dNTP-stabilized, a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.02.016

    authors: Baptiste BA,Jacob KD,Eckert KA

    更新日期:2015-05-01 00:00:00

  • DNA repair, damage signaling and carcinogenesis.

    abstract::The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisti...

    journal_title:DNA repair

    pub_type:

    doi:10.1016/j.dnarep.2007.12.007

    authors: Lavelle C,Salles B,Wiesmüller L

    更新日期:2008-04-02 00:00:00

  • Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    abstract::DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this p...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.019

    authors: Shima N,Pederson KD

    更新日期:2017-08-01 00:00:00

  • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    abstract::In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.03.009

    authors: Lingaraju GM,Prota AE,Winkler FK

    更新日期:2009-07-04 00:00:00

  • Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair.

    abstract::Neuronal protection induced by ischemic preconditioning has an important role in the reduction of stroke volume and attenuation of neuronal cell death. Ischemic injury is associated with increased oxidative DNA damage, and failure to efficiently repair these oxidatively damaged lesions results in the accumulation of m...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.02.027

    authors: Li N,Wu H,Yang S,Chen D

    更新日期:2007-09-01 00:00:00