Recruitment and retention dynamics of RECQL5 at DNA double strand break sites.

Abstract:

:RECQL5 is one of the five human RecQ helicases, involved in the maintenance of genomic integrity. While much insight has been gained into the function of the Werner (WRN) and Bloom syndrome proteins (BLM), little is known about RECQL5. We have analyzed the recruitment and retention dynamics of RECQL5 at laser-induced DNA double strand breaks (DSBs) relative to other human RecQ helicases. RECQL5-depleted cells accumulate persistent 53BP1 foci followed by γ-irradiation, indicating a potential role of RECQL5 in the processing of DSBs. Real time imaging of live cells using confocal laser microscopy shows that RECQL5 is recruited early to laser-induced DSBs and remains for a shorter duration than BLM and WRN, but persist longer than RECQL4. These studies illustrate the differential involvement of RecQ helicases in the DSB repair process. Mapping of domains within RECQL5 that are necessary for recruitment to DSBs revealed that both the helicase and KIX domains are required for DNA damage recognition and stable association of RECQL5 to the DSB sites. Previous studies have shown that MRE11 is essential for the recruitment of RECQL5 to the DSB sites. Here we show that the recruitment of RECQL5 does not depend on the exonuclease activity of MRE11 or on active transcription by RNA polymerase II, one of the prominent interacting partners of RECQL5. Also, the recruitment of RECQL5 to laser-induced damage sites is independent of the presence of other DNA damage signaling and repair proteins BLM, WRN and ATM.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Popuri V,Ramamoorthy M,Tadokoro T,Singh DK,Karmakar P,Croteau DL,Bohr VA

doi

10.1016/j.dnarep.2012.05.001

subject

Has Abstract

pub_date

2012-07-01 00:00:00

pages

624-35

issue

7

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(12)00098-5

journal_volume

11

pub_type

杂志文章
  • Paradoxical roles of cyclin D1 in DNA stability.

    abstract::Maintenance of DNA integrity is vital for all of the living organisms. Consequence of DNA damaging ranges from, introducing harmless synonymous mutations, to causing disease-associated mutations, genome instability, and cell death. A cell cycle protein cyclin D1 is an established cancer-driving protein. However, contr...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2016.04.011

    authors: Jirawatnotai S,Sittithumcharee G

    更新日期:2016-06-01 00:00:00

  • Checkpoint adaptation in recombination-deficient cells drives aneuploidy and resistance to genotoxic agents.

    abstract::Human cancers frequently harbour mutations in DNA repair genes, rendering the use of DNA damaging agents as an effective therapeutic intervention. As therapy-resistant cells often arise, it is important to better understand the molecular pathways that drive resistance in order to facilitate the eventual targeting of s...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102939

    authors: Vydzhak O,Bender K,Klermund J,Busch A,Reimann S,Luke B

    更新日期:2020-11-01 00:00:00

  • Dynamics of mammalian NER proteins.

    abstract::Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms tha...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2011.04.015

    authors: Vermeulen W

    更新日期:2011-07-15 00:00:00

  • Ultra-violet light induced changes in DNA dynamics may enhance TT-dimer recognition.

    abstract::Short-wave ultra-violet light promotes the formation of DNA dimers between adjacent thymine bases, and if unrepaired these dimers may induce skin cancer. Living cells have a very robust repair system capable of repairing hundreds of lesions every day. Although many of the details of the dimer repair mechanism are know...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.04.007

    authors: Blagoev KB,Alexandrov BS,Goodwin EH,Bishop AR

    更新日期:2006-07-13 00:00:00

  • Detection of the small oligonucleotide products of nucleotide excision repair in UVB-irradiated human skin.

    abstract::UVB radiation results in the formation of potentially mutagenic photoproducts in the DNA of epidermal skin cells. In vitro approaches have demonstrated that the nucleotide excision repair (NER) machinery removes UV photoproducts from DNA in the form of small (∼30-nt-long), excised, damage-containing DNA oligonucleotid...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102766

    authors: Choi JH,Han S,Kemp MG

    更新日期:2020-02-01 00:00:00

  • Enhanced gene amplification in human cells knocked down for DNA-PKcs.

    abstract::Gene amplification, a key mechanism for oncogene activation and drug resistance in tumour cells, involves the generation and joining of DNA double-strand breaks. Amplified DNA can be carried either on intra-chromosomal arrays or on extra-chromosomal elements (double minutes). We previously showed that, in rodent cells...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.08.015

    authors: Salzano A,Kochiashvili N,Nergadze SG,Khoriauli L,Smirnova A,Ruiz-Herrera A,Mondello C,Giulotto E

    更新日期:2009-01-01 00:00:00

  • Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae.

    abstract::The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (N...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.010

    authors: Klassen R,Krampe S,Meinhardt F

    更新日期:2007-12-01 00:00:00

  • Proteasome inhibition suppresses DNA-dependent protein kinase activation caused by camptothecin.

    abstract::The ubiquitin-proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases i...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.10.008

    authors: Sakasai R,Teraoka H,Tibbetts RS

    更新日期:2010-01-02 00:00:00

  • The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation.

    abstract::ATM and ATR are stress-response kinases which respond to a variety of insults including ionizing radiation, replication arrest, ultraviolet radiation and hypoxia/re-oxygenation. Hypoxia occupies a unique niche in the study of both ATR- and ATM-mediated checkpoint pathways. Hypoxia is a physiologically significant stre...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2004.03.035

    authors: Hammond EM,Giaccia AJ

    更新日期:2004-08-01 00:00:00

  • Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity.

    abstract::Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non-proliferating cells both had capa...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.04.002

    authors: Akbari M,Peña-Diaz J,Andersen S,Liabakk NB,Otterlei M,Krokan HE

    更新日期:2009-07-04 00:00:00

  • Oxidative DNA damage repair in mammalian cells: a new perspective.

    abstract::Oxidatively induced DNA lesions have been implicated in the etiology of many diseases (including cancer) and in aging. Repair of oxidatively damaged bases in all organisms occurs primarily via the DNA base excision repair (BER) pathway, initiated with their excision by DNA glycosylases. Only two mammalian DNA glycosyl...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2006.10.011

    authors: Hazra TK,Das A,Das S,Choudhury S,Kow YW,Roy R

    更新日期:2007-04-01 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • The splicing component ISY1 regulates APE1 in base excision repair.

    abstract::The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the remov...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102769

    authors: Jaiswal AS,Williamson EA,Srinivasan G,Kong K,Lomelino CL,McKenna R,Walter C,Sung P,Narayan S,Hromas R

    更新日期:2020-02-01 00:00:00

  • Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance.

    abstract::NF-E2-related factor 2 (Nrf2) protein is a cytosolic transcription factor that regulates antioxidant and stress-related enzymes. Kelch-like ECH-associated protein 1 (Keap1) binds Nrf2 and accelerates ubiquitination and proteasome-dependent degradation of Nrf2. Nrf2 modifies the sensitivity of the cell environment to e...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.03.008

    authors: Jeddi F,Soozangar N,Sadeghi MR,Somi MH,Samadi N

    更新日期:2017-06-01 00:00:00

  • Mutational consequences of dNTP pool imbalances in E. coli.

    abstract::The accuracy of DNA synthesis depends on the accuracy of the polymerase as well as the quality and concentration(s) of the available 5'-deoxynucleoside-triphosphate DNA precursors (dNTPs). The relationships between dNTPs and error rates have been studied in vitro, but only limited insights exist into these correlation...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.10.011

    authors: Schaaper RM,Mathews CK

    更新日期:2013-01-01 00:00:00

  • Current role of mammalian sirtuins in DNA repair.

    abstract::Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. Thus, to protect against DNA damage, cells have evolved complex and finely regulated mechanisms collectively known as DNA-damage response (DDR). However, DNA repair in eukaryotes does not occur merely in nake...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2019.06.009

    authors: Lagunas-Rangel FA

    更新日期:2019-08-01 00:00:00

  • Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.

    abstract::In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2009.03.009

    authors: Lingaraju GM,Prota AE,Winkler FK

    更新日期:2009-07-04 00:00:00

  • The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.

    abstract::DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated P...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.02.016

    authors: Ball LG,Xu X,Blackwell S,Hanna MD,Lambrecht AD,Xiao W

    更新日期:2014-04-01 00:00:00

  • Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes.

    abstract::OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes,...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.005

    authors: Seifermann M,Ulges A,Bopp T,Melcea S,Schäfer A,Oka S,Nakabeppu Y,Klungland A,Niehrs C,Epe B

    更新日期:2017-10-01 00:00:00

  • The role of DNA repair in brain related disease pathology.

    abstract::Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic ...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2013.04.010

    authors: Canugovi C,Misiak M,Ferrarelli LK,Croteau DL,Bohr VA

    更新日期:2013-08-01 00:00:00

  • Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair.

    abstract::Neuronal protection induced by ischemic preconditioning has an important role in the reduction of stroke volume and attenuation of neuronal cell death. Ischemic injury is associated with increased oxidative DNA damage, and failure to efficiently repair these oxidatively damaged lesions results in the accumulation of m...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.02.027

    authors: Li N,Wu H,Yang S,Chen D

    更新日期:2007-09-01 00:00:00

  • Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    abstract::Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.07.009

    authors: Kato M,Lin SJ

    更新日期:2014-11-01 00:00:00

  • Molecular characterization and developmental expression of the TFIIH factor p62 gene from Drosophila melanogaster: effects on the UV light sensitivity of a p62 mutant fly.

    abstract::TFIIH is a multiprotein complex that has a central role in the RNA pol II mediated transcription, in DNA repair and in the control of the cell cycle. Mutations in some components of TFIIH are associated with three hereditary human syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (T...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00012-5

    authors: Castro J,Merino C,Zurita M

    更新日期:2002-05-30 00:00:00

  • MDC1 is ubiquitylated on its tandem BRCT domain and directly binds RAP80 in a UBC13-dependent manner.

    abstract::The cellular response to DNA damage is essential for maintenance of genomic stability. MDC1 is a key member of the DNA damage response. It is an adaptor protein that binds and recruits proteins to sites of DNA damage, a crucial step for a proper response. MDC1 contains several protein-protein interacting modules, incl...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.04.016

    authors: Strauss C,Halevy T,Macarov M,Argaman L,Goldberg M

    更新日期:2011-08-15 00:00:00

  • DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition.

    abstract::Breast cancer is the most common and significant cancers in females regarding the loss of life quality. Similar to other cancers, one of the etiologic factors in breast cancer is DNA damage. A plethora of molecules are responsible for sensing DNA damage and mediating actions which lead to DNA repair, senescence, cell ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103032

    authors: Mirza-Aghazadeh-Attari M,Recio MJ,Darband SG,Kaviani M,Safa A,Mihanfar A,Sadighparvar S,Karimian A,Alemi F,Majidinia M,Yousefi B

    更新日期:2020-12-17 00:00:00

  • Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint.

    abstract::The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.07.008

    authors: Majka J,Burgers PM

    更新日期:2005-09-28 00:00:00

  • Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa.

    abstract::Interaction between MutS and the replication factor β clamp has been extensively studied in a Mismatch Repair context; however, its functional consequences are not well understood. We have analyzed the role of the MutS-β clamp interaction in Pseudomonas aeruginosa by characterizing a β clamp binding motif mutant, deno...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.01.015

    authors: Monti MR,Miguel V,Borgogno MV,Argaraña CE

    更新日期:2012-05-01 00:00:00

  • Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    abstract::DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this p...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2017.06.019

    authors: Shima N,Pederson KD

    更新日期:2017-08-01 00:00:00

  • Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress.

    abstract::XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa(-/-) and Xpc(-/-) exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.019

    authors: Melis JP,Kuiper RV,Zwart E,Robinson J,Pennings JL,van Oostrom CT,Luijten M,van Steeg H

    更新日期:2013-12-01 00:00:00

  • Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.

    abstract::If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is respon...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.08.010

    authors: Bilotti K,Kennedy EE,Li C,Delaney S

    更新日期:2017-11-01 00:00:00