Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.

Abstract:

:Transcription factor II H (TFIIH) is composed of core TFIIH and Cdk-activating kinase (CAK) complexes. Besides transcription, TFIIH also participates in nucleotide excision repair (NER), verifying DNA lesions through its helicase components XPB and XPD. The assembly state of TFIIH is known to be affected by truncation mutations in xeroderma pigmentosum group G/Cockayne syndrome (XP-G/CS). Here, we showed that CAK component MAT1 was rapidly recruited to UV-induced DNA damage sites, co-localizing with core TFIIH component p62, and dispersed from the damage sites upon completion of DNA repair. While the core TFIIH-CAK association remained intact, MAT1 failed to accumulate at DNA damage sites in fibroblasts harboring XP-B or XP-B/CS mutations. Nevertheless, MAT1, XPD and XPC as well as XPG were able to accumulate at damage sites in XP-D fibroblasts, in which the core TFIIH-CAK association also remained intact. Interestingly, XPG recruitment was impaired in XP-B/CS fibroblasts derived from patients with mild phenotype, but persisted in XP-B/CS fibroblasts from severely affected patients resulting in a nonfunctional preincision complex. An examination of steady-state levels of RNA polymerase II (RNAPII) indicated that UV-induced RNAPII phosphorylation was dramatically reduced in XP-B/CS fibroblasts. These results demonstrated that the CAK rapidly disassociates from the core TFIIH upon assembly of nonfunctional preincision complex in XP-B and XP-B/CS cells. The persistency of nonfunctional preincision complex correlates with the severity exhibited by XP-B patients. The results suggest that XPB and XPD helicases differentially regulate the anchoring of CAK to core TFIIH during damage verification step of NER.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Zhu Q,Wani G,Sharma N,Wani A

doi

10.1016/j.dnarep.2012.09.003

subject

Has Abstract

pub_date

2012-12-01 00:00:00

pages

942-50

issue

12

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(12)00200-5

journal_volume

11

pub_type

杂志文章
  • DNA repair, damage signaling and carcinogenesis.

    abstract::The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisti...

    journal_title:DNA repair

    pub_type:

    doi:10.1016/j.dnarep.2007.12.007

    authors: Lavelle C,Salles B,Wiesmüller L

    更新日期:2008-04-02 00:00:00

  • The involvement of key DNA repair pathways in the formation of chromosome rearrangements in embryonic stem cells.

    abstract::It is vital that embryonic stem (ES) cells, which give rise to the diverse tissues of the mature organism, maintain genetic stability. To understand mechanisms for the prevention and causation of chromosomal instability, we have used spectral karyotyping (SKY) to analyse ES cells from wild-type and repair-gene knockou...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.05.005

    authors: Griffin C,Waard Hd,Deans B,Thacker J

    更新日期:2005-08-15 00:00:00

  • Real-time investigation of the roles of ATP hydrolysis by UvrA and UvrB during DNA damage recognition in nucleotide excision repair.

    abstract::Nucleotide excision repair (NER) stands out among other DNA repair systems for its ability to process a diverse set of unrelated DNA lesions. In bacteria, NER damage detection is orchestrated by the UvrA and UvrB proteins, which form the UvrA2-UvrB2 (UvrAB) damage sensing complex. The highly versatile damage recogniti...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.103024

    authors: Kraithong T,Sucharitakul J,Buranachai C,Jeruzalmi D,Chaiyen P,Pakotiprapha D

    更新日期:2021-01-01 00:00:00

  • Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2.

    abstract::In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of t...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.11.008

    authors: Wu W,Wang M,Wu W,Singh SK,Mussfeldt T,Iliakis G

    更新日期:2008-02-01 00:00:00

  • The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast.

    abstract::Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same pr...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.05.005

    authors: Li S,Ding B,LeJeune D,Ruggiero C,Chen X,Smerdon MJ

    更新日期:2007-11-01 00:00:00

  • Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation.

    abstract::Deoxyinosine (dI) is produced in DNA by the hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the product of the nfi gene. The repair was studied in vivo using high-efficiency oligonucleotide transformation mediated by the Beta protein of ba...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.09.010

    authors: Weiss B

    更新日期:2008-02-01 00:00:00

  • Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions.

    abstract::Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.02.004

    authors: León Ortiz AM,Reid RJ,Dittmar JC,Rothstein R,Nicolas A

    更新日期:2011-05-05 00:00:00

  • Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase.

    abstract::The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.04.002

    authors: Ganesan AK,Smith AJ,Savery NJ,Zamos P,Hanawalt PC

    更新日期:2007-10-01 00:00:00

  • Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae.

    abstract::The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (N...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.010

    authors: Klassen R,Krampe S,Meinhardt F

    更新日期:2007-12-01 00:00:00

  • Detection of the small oligonucleotide products of nucleotide excision repair in UVB-irradiated human skin.

    abstract::UVB radiation results in the formation of potentially mutagenic photoproducts in the DNA of epidermal skin cells. In vitro approaches have demonstrated that the nucleotide excision repair (NER) machinery removes UV photoproducts from DNA in the form of small (∼30-nt-long), excised, damage-containing DNA oligonucleotid...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102766

    authors: Choi JH,Han S,Kemp MG

    更新日期:2020-02-01 00:00:00

  • A der(8)t(8;11) chromosome in the Karpas-620 myeloma cell line expresses only cyclin D1: yet both cyclin D1 and MYC are repositioned in close proximity to the 3'IGH enhancer.

    abstract::The Karpas-620 human myeloma cell line (HMCL) expresses high levels of Cyclin D1 (CCND1), but has a der(8)t(8;11) and a der(14)t(8;14), and not a conventional t(11;14). Fluorescent in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) studies suggest that der(14)t(11;14) from a primary transl...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.11.010

    authors: Dib A,Glebov OK,Shou Y,Singer RH,Kuehl WM

    更新日期:2009-03-01 00:00:00

  • RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.

    abstract::Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.007

    authors: Khairnar NP,Kamble VA,Misra HS

    更新日期:2008-01-01 00:00:00

  • Unraveling secrets of telomeres: one molecule at a time.

    abstract::Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of t...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2014.01.012

    authors: Lin J,Kaur P,Countryman P,Opresko PL,Wang H

    更新日期:2014-08-01 00:00:00

  • Analysis of mutational signatures in C. elegans: Implications for cancer genome analysis.

    abstract::Genome integrity is constantly challenged by exogenous and endogenous insults, and mutations are associated with inherited disease and cancer. Here we summarize recent studies that utilized C. elegans whole genome next generation sequencing to experimentally determine mutational signatures associated with mutagen expo...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102957

    authors: Meier B,Volkova NV,Gerstung M,Gartner A

    更新日期:2020-11-01 00:00:00

  • An improved method for the detection of nucleotide excision repair factors at local UV DNA damage sites.

    abstract::Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclea...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.01.005

    authors: Dutto I,Cazzalini O,Stivala LA,Prosperi E

    更新日期:2017-03-01 00:00:00

  • Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation.

    abstract::In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lys...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2006.03.005

    authors: Toh GW,O'Shaughnessy AM,Jimeno S,Dobbie IM,Grenon M,Maffini S,O'Rorke A,Lowndes NF

    更新日期:2006-06-10 00:00:00

  • Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.

    abstract::DNA double-strand breaks (DSBs) in yeast are repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad51 forms nucleoprotein filaments at processed broken ends that effect strand exchange, forming heteroduplex DNA (hDNA) that gives rise to a gene conversion tract. We hypothesized that excess...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2005.03.003

    authors: Paffett KS,Clikeman JA,Palmer S,Nickoloff JA

    更新日期:2005-06-08 00:00:00

  • Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair.

    abstract::The Tousled-like kinases are involved in chromatin assembly, DNA repair, transcription, and chromosome segregation. In this work, we show that overexpression of TLK1B hastens repair of double strand breaks (DSBs) in mouse cells. We have identified Rad9 as a protein interacting tightly with TLK1B. TLK1B phosphorylates ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.09.005

    authors: Sunavala-Dossabhoy G,De Benedetti A

    更新日期:2009-01-01 00:00:00

  • Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems.

    abstract::We studied how DNA divergence between recombining DNAs and the mismatch repair system modulate the SOS response in Escherichia coli. The observed positive log-linear correlation between SOS induction and DNA divergence, and the negative correlation between SOS induction and frequency of recombination, suggest that the...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.09.008

    authors: Delmas S,Matic I

    更新日期:2005-02-03 00:00:00

  • Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.

    abstract::The proximity of the mitochondrial genome to the respiratory chain, a major source of ROS (radical oxygen species), makes mtDNA more vulnerable to oxidative damage than nuclear DNA. Mitochondrial BER (base excision repair) is generally considered to be the main pathway involved in the prevention of oxidative lesion-in...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.11.004

    authors: Kaniak A,Dzierzbicki P,Rogowska AT,Malc E,Fikus M,Ciesla Z

    更新日期:2009-03-01 00:00:00

  • Promoter methylation of O(6)-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53.

    abstract::Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with w...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.04.016

    authors: Lai JC,Cheng YW,Goan YG,Chang JT,Wu TC,Chen CY,Lee H

    更新日期:2008-08-02 00:00:00

  • The Rad52-Rad59 complex interacts with Rad51 and replication protein A.

    abstract::The RAD52 gene is essential for homology-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Rad52 forms complexes with Rad51, replication protein A (RPA) or Rad59 and its presence is essential for the formation of Rad51-Rad52-Rad59 and RPA-Rad52-Rad59 complexes. The N-terminal region of Rad52, which...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(03)00121-6

    authors: Davis AP,Symington LS

    更新日期:2003-10-07 00:00:00

  • Chromosome integrity at a double-strand break requires exonuclease 1 and MRX.

    abstract::The continuity of duplex DNA is generally considered a prerequisite for chromosome continuity. However, as previously shown in yeast as well as human cells, the introduction of a double-strand break (DSB) does not generate a chromosome break (CRB) in yeast or human cells. The transition from DSB to CRB was found to be...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.10.004

    authors: Nakai W,Westmoreland J,Yeh E,Bloom K,Resnick MA

    更新日期:2011-01-02 00:00:00

  • Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes.

    abstract::Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-ind...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.08.008

    authors: van Oosten M,Stout GJ,Backendorf C,Rebel H,de Wind N,Darroudi F,van Kranen HJ,de Gruijl FR,Mullenders LH

    更新日期:2005-01-02 00:00:00

  • The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress.

    abstract::Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reduc...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.11.006

    authors: Vasko MR,Guo C,Kelley MR

    更新日期:2005-03-02 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • CtIP: A DNA damage response protein at the intersection of DNA metabolism.

    abstract::The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.04.016

    authors: Makharashvili N,Paull TT

    更新日期:2015-08-01 00:00:00

  • Molecular basis for the functions of a bacterial MutS2 in DNA repair and recombination.

    abstract::Bacterial MutS2 proteins, consisting of functional domains for ATPase, DNA-binding, and nuclease activities, play roles in DNA recombination and repair. Here we observe a mechanism for generating MutS2 expression diversity in the human pathogen Helicobacter pylori, and identify a unique MutS2 domain responsible for sp...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2017.07.004

    authors: Wang G,Maier RJ

    更新日期:2017-09-01 00:00:00

  • Functional analysis of the interaction between the mismatch repair protein MutS and the replication processivity factor β clamp in Pseudomonas aeruginosa.

    abstract::Interaction between MutS and the replication factor β clamp has been extensively studied in a Mismatch Repair context; however, its functional consequences are not well understood. We have analyzed the role of the MutS-β clamp interaction in Pseudomonas aeruginosa by characterizing a β clamp binding motif mutant, deno...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.01.015

    authors: Monti MR,Miguel V,Borgogno MV,Argaraña CE

    更新日期:2012-05-01 00:00:00

  • RAD51D protects against MLH1-dependent cytotoxic responses to O(6)-methylguanine.

    abstract::S(N)1-type methylating agents generate O(6)-methyl guanine (O(6)-meG), which is a potently mutagenic, toxic, and recombinogenic DNA adduct. Recognition of O(6)-meG:T mismatches by mismatch repair (MMR) causes sister chromatid exchanges, which are representative of homologous recombination (HR) events. Although the MMR...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.01.009

    authors: Rajesh P,Rajesh C,Wyatt MD,Pittman DL

    更新日期:2010-04-04 00:00:00