The involvement of key DNA repair pathways in the formation of chromosome rearrangements in embryonic stem cells.

Abstract:

:It is vital that embryonic stem (ES) cells, which give rise to the diverse tissues of the mature organism, maintain genetic stability. To understand mechanisms for the prevention and causation of chromosomal instability, we have used spectral karyotyping (SKY) to analyse ES cells from wild-type and repair-gene knockout mice. We chose cells deficient in Ku70 (DNA end joining), Xrcc2 (gene conversion), Ercc1 (single-strand annealing) and Csb (transcription-coupled repair) to represent potentially-important DNA repair pathways, plus an Xpc-deficient line to examine loss of global nucleotide excision repair (NER). Spontaneous and radiation (X-ray or alpha-particle)-induced chromosome changes were assessed to measure the influence of different levels of damage severity on response. We show that most repair pathways (except for global NER) protect against chromosome changes induced by ionizing radiations, while only homology-dependent pathways protect against spontaneous chromosomal change in ES cells. However, for a given level of damage, the prevalence of different types of changes alters in the different repair-deficient lines. Thus, loss of Ercc1, Csb or Ku70 leads to increased fragment formation, but loss of Xrcc2 promotes exchanges between chromosomes. Strikingly, we found that loss of the Csb gene function specifically protects ES cells from complex exchanges, suggesting a role for transcription-associated events in complex exchange formation.

journal_name

DNA Repair (Amst)

journal_title

DNA repair

authors

Griffin C,Waard Hd,Deans B,Thacker J

doi

10.1016/j.dnarep.2005.05.005

keywords:

subject

Has Abstract

pub_date

2005-08-15 00:00:00

pages

1019-27

issue

9

eissn

1568-7864

issn

1568-7856

pii

S1568-7864(05)00117-5

journal_volume

4

pub_type

杂志文章
  • Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research.

    abstract::Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2014.03.009

    authors: Nagel ZD,Chaim IA,Samson LD

    更新日期:2014-07-01 00:00:00

  • Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress.

    abstract::XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa(-/-) and Xpc(-/-) exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.019

    authors: Melis JP,Kuiper RV,Zwart E,Robinson J,Pennings JL,van Oostrom CT,Luijten M,van Steeg H

    更新日期:2013-12-01 00:00:00

  • recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli.

    abstract::recX is a small open reading frame located downstream of recA that is conserved in many bacteria. In Escherichia coli, the recX gene (also named oraA) is a 501 bp open reading frame that encodes a predicted basic protein. Transcriptional analysis by Northern blots showed that in E. coli the recX gene is SOS-regulated....

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/s1568-7864(02)00217-3

    authors: Pagès V,Koffel-Schwartz N,Fuchs RP

    更新日期:2003-03-01 00:00:00

  • Current role of mammalian sirtuins in DNA repair.

    abstract::Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. Thus, to protect against DNA damage, cells have evolved complex and finely regulated mechanisms collectively known as DNA-damage response (DDR). However, DNA repair in eukaryotes does not occur merely in nake...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2019.06.009

    authors: Lagunas-Rangel FA

    更新日期:2019-08-01 00:00:00

  • NBS1 and its functional role in the DNA damage response.

    abstract::Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, th...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2004.03.023

    authors: Kobayashi J,Antoccia A,Tauchi H,Matsuura S,Komatsu K

    更新日期:2004-08-01 00:00:00

  • Statistical analysis of kinetics, distribution and co-localisation of DNA repair foci in irradiated cells: cell cycle effect and implications for prediction of radiosensitivity.

    abstract::Detection of γ-H2AX foci as a measure of DNA double strand break induction and repair provides the basis of a rapid approach to establish individual radiosensitivity. However, the assignment of criteria to define increased radiosensitivity is not straightforward. Experimental end points, analytical methods and prolife...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.07.002

    authors: Martin OA,Ivashkevich A,Choo S,Woodbine L,Jeggo PA,Martin RF,Lobachevsky P

    更新日期:2013-10-01 00:00:00

  • Genetic evidence that both dNTP-stabilized and strand slippage mechanisms may dictate DNA polymerase errors within mononucleotide microsatellites.

    abstract::Mononucleotide microsatellites are tandem repeats of a single base pair, abundant within coding exons and frequent sites of mutation in the human genome. Because the repeated unit is one base pair, multiple mechanisms of insertion/deletion (indel) mutagenesis are possible, including strand-slippage, dNTP-stabilized, a...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2015.02.016

    authors: Baptiste BA,Jacob KD,Eckert KA

    更新日期:2015-05-01 00:00:00

  • An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli.

    abstract::Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.003

    authors: Cunniffe SM,Lomax ME,O'Neill P

    更新日期:2007-12-01 00:00:00

  • DNA repair, damage signaling and carcinogenesis.

    abstract::The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisti...

    journal_title:DNA repair

    pub_type:

    doi:10.1016/j.dnarep.2007.12.007

    authors: Lavelle C,Salles B,Wiesmüller L

    更新日期:2008-04-02 00:00:00

  • Regulation of GLI1 by cis DNA elements and epigenetic marks.

    abstract::GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5' exons and large introns...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.04.011

    authors: Taylor R,Long J,Yoon JW,Childs R,Sylvestersen KB,Nielsen ML,Leong KF,Iannaccone S,Walterhouse DO,Robbins DJ,Iannaccone P

    更新日期:2019-07-01 00:00:00

  • Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions.

    abstract::Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.02.004

    authors: León Ortiz AM,Reid RJ,Dittmar JC,Rothstein R,Nicolas A

    更新日期:2011-05-05 00:00:00

  • DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks.

    abstract::Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. R...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.06.015

    authors: Yu Y,Mahaney BL,Yano K,Ye R,Fang S,Douglas P,Chen DJ,Lees-Miller SP

    更新日期:2008-10-01 00:00:00

  • The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast.

    abstract::Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same pr...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.05.005

    authors: Li S,Ding B,LeJeune D,Ruggiero C,Chen X,Smerdon MJ

    更新日期:2007-11-01 00:00:00

  • RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.

    abstract::Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.007

    authors: Khairnar NP,Kamble VA,Misra HS

    更新日期:2008-01-01 00:00:00

  • Mutant cells defective in DNA repair pathways provide a sensitive high-throughput assay for genotoxicity.

    abstract::Chemicals used industrially and commercially are required by law to be assessed for their genotoxic potential. However, all currently used assays have major limitations and despite intense effort, there is no universal agreement on which tests should be employed, or how to interpret results. We have developed a new as...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2010.09.017

    authors: Evans TJ,Yamamoto KN,Hirota K,Takeda S

    更新日期:2010-12-10 00:00:00

  • A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation.

    abstract::Both UVB radiation and DNA-breaking agents were previously reported to kill Arabidopsis stem cells. We demonstrate that death induced by UVB or by ionizing radiation (IR) requires Suppressor of Gamma Response 1 (SOG1), a transcription factor already found to govern many responses to these agents in Arabidopsis. DNA-da...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2010.06.006

    authors: Furukawa T,Curtis MJ,Tominey CM,Duong YH,Wilcox BW,Aggoune D,Hays JB,Britt AB

    更新日期:2010-09-04 00:00:00

  • Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia.

    abstract::Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mi...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.11.002

    authors: Sharma NK,Lebedeva M,Thomas T,Kovalenko OA,Stumpf JD,Shadel GS,Santos JH

    更新日期:2014-01-01 00:00:00

  • Early steps of double-strand break repair in Bacillus subtilis.

    abstract::All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillu...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2012.12.005

    authors: Alonso JC,Cardenas PP,Sanchez H,Hejna J,Suzuki Y,Takeyasu K

    更新日期:2013-03-01 00:00:00

  • A second life in science--working after the age of 65.

    abstract::I was born in January, 1921 and was fortunate in working for a research organization that had no fixed retirement age. I was permitted to continue Science as long as there were some resources to support research that had some relevance to the organization's goals. A number of projects on which I worked were continuati...

    journal_title:DNA repair

    pub_type: 历史文章,杂志文章

    doi:10.1016/j.dnarep.2003.04.002

    authors: Setlow RB

    更新日期:2004-04-01 00:00:00

  • A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

    abstract::Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2015.01.015

    authors: Georgescu R,Langston L,O'Donnell M

    更新日期:2015-05-01 00:00:00

  • Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues.

    abstract::Endonuclease III (EndoIII) is nearly ubiquitous in all three domains of life. EndoIII family proteins exhibit a bifunctional (glycosylase/lyase) activity on oxidative/saturated pyrimidine bases, such as thymine glycol. Previous studies on EndoIII homologs have reported the presence of important residues involved in su...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2020.102859

    authors: Shiraishi M,Mizutani K,Yamamoto J,Iwai S

    更新日期:2020-06-01 00:00:00

  • Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis.

    abstract::Reactive oxygen species drive the oxidation of guanine to 8-oxoguanine (8oxoG), which threatens genome integrity. The repair of 8oxoG is carried out by base excision repair enzymes in Bacteria and Eukarya, however, little is known about archaeal 8oxoG repair. This study identifies a member of the Ogg-subfamily archaea...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2019.102767

    authors: Gehring AM,Zatopek KM,Burkhart BW,Potapov V,Santangelo TJ,Gardner AF

    更新日期:2020-02-01 00:00:00

  • Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis.

    abstract::Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2016.11.004

    authors: Stepchenkova EI,Tarakhovskaya ER,Siebler HM,Pavlov YI

    更新日期:2017-01-01 00:00:00

  • Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA.

    abstract::Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity,...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2008.06.014

    authors: Vázquez MV,Rojas V,Tercero JA

    更新日期:2008-10-01 00:00:00

  • The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress.

    abstract::Although correlative studies demonstrate a reduction in the expression of apurinic/apyrimidinic endonuclease/redox effector factor (Ape1/Ref-1 or Ape1) in neural tissues after neuronal insult, the role of Ape1 in regulating neurotoxicity remains to be elucidated. To address this issue, we examined the effects of reduc...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2004.11.006

    authors: Vasko MR,Guo C,Kelley MR

    更新日期:2005-03-02 00:00:00

  • DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells.

    abstract::DNA interstrand crosslinks (ICLs) are highly toxic lesions that covalently link both strands of DNA and distort the DNA helix. Crosslinking agents have been shown to stall DNA replication and failure to repair ICL lesions before encountered by replication forks may induce severe DNA damage. Most knowledge of the ICL r...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2012.09.010

    authors: Vare D,Groth P,Carlsson R,Johansson F,Erixon K,Jenssen D

    更新日期:2012-12-01 00:00:00

  • Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes.

    abstract::Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2013.08.010

    authors: Maher RL,Prasad A,Rizvanova O,Wallace SS,Pederson DS

    更新日期:2013-11-01 00:00:00

  • Lack of the DNA glycosylases MYH and OGG1 in the cancer prone double mutant mouse does not increase mitochondrial DNA mutagenesis.

    abstract::Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as ...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2011.12.001

    authors: Halsne R,Esbensen Y,Wang W,Scheffler K,Suganthan R,Bjørås M,Eide L

    更新日期:2012-03-01 00:00:00

  • Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae.

    abstract::The linear plasmid (pPac1-2) encoded killer toxin (PaT) of the yeast Pichia acaciae arrests sensitive Saccharomyces cerevisiae cells in the S-phase of the cell cycle and induces mutations. Here we provide evidence for opposite effects in PaT resistance of homologous recombination (HR) and non-homologous end joining (N...

    journal_title:DNA repair

    pub_type: 杂志文章

    doi:10.1016/j.dnarep.2007.07.010

    authors: Klassen R,Krampe S,Meinhardt F

    更新日期:2007-12-01 00:00:00

  • The enigmatic role of Mfd in replication-transcription conflicts in bacteria.

    abstract::Conflicts between replication and transcription can have life-threatening consequences. RNA polymerase (RNAP) is the major impediment to replication progression, and its efficient removal from DNA should mitigate the consequences of collisions with replication. Cells have various proteins that can resolve conflicts by...

    journal_title:DNA repair

    pub_type: 杂志文章,评审

    doi:10.1016/j.dnarep.2019.102659

    authors: Ragheb M,Merrikh H

    更新日期:2019-09-01 00:00:00