The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow.

Abstract:

:Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cover 40% of the microvasculature, are contractile, and are innervated by sympathetic axons. Sympathetic adrenergic input increases pericyte activity and reduces capillary diameter and local blood flow. By contrast, activating beta cells by increasing glucose concentration inhibits pericytes, dilates islet capillaries, and increases local blood flow. These effects on pericytes are mediated by endogenous adenosine, which is likely derived from ATP co-released with insulin. Pericyte coverage of islet capillaries drops drastically in type 2 diabetes, suggesting that, under diabetic conditions, islets lose this mechanism to control their own blood supply. This may lead to inadequate insulin release into the circulation, further deteriorating glycemic control.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Almaça J,Weitz J,Rodriguez-Diaz R,Pereira E,Caicedo A

doi

10.1016/j.cmet.2018.02.016

subject

Has Abstract

pub_date

2018-03-06 00:00:00

pages

630-644.e4

issue

3

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(18)30127-X

journal_volume

27

pub_type

杂志文章
  • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.

    abstract::SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.03.004

    authors: Bai P,Cantó C,Oudart H,Brunyánszki A,Cen Y,Thomas C,Yamamoto H,Huber A,Kiss B,Houtkooper RH,Schoonjans K,Schreiber V,Sauve AA,Menissier-de Murcia J,Auwerx J

    更新日期:2011-04-06 00:00:00

  • Getting a "Hold" on NPC2.

    abstract::Lipoprotein cholesterol is mobilized from lysosomes by actions of the NPC1 and NPC2 proteins. In this issue of Cell Metabolism, Harrison et al. report on identification of an NPC2-interacting protein, the Nogo-B receptor, that regulates NPC2 protein levels. NPC2 stabilization may represent a novel mechanism through wh...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.08.006

    authors: Ory DS

    更新日期:2009-09-01 00:00:00

  • The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.

    abstract::Iron-dependent degradation of iron-regulatory protein 2 (IRP2) is a key event for maintenance of an appropriate intracellular concentration of iron. Although FBXL5 (F box and leucine-rich repeat protein 5) is thought to mediate this degradation, the role of FBXL5 in the control of iron homeostasis in vivo has been poo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.07.011

    authors: Moroishi T,Nishiyama M,Takeda Y,Iwai K,Nakayama KI

    更新日期:2011-09-07 00:00:00

  • Translating In Vitro T Cell Metabolic Findings to In Vivo Tumor Models of Nutrient Competition.

    abstract::Reductionist in vitro T cell assays have identified metabolic pathways critical for T cell function within the tumor microenvironment. We discuss the challenges of testing these concepts using in vivo tumor models. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2018.07.009

    authors: Ecker C,Riley JL

    更新日期:2018-08-07 00:00:00

  • NADH Ties One-Carbon Metabolism to Cellular Respiration.

    abstract::In this issue of Cell Metabolism, Yang et al., 2020 report that serine is a source of mitochondrial NADH derived from one-carbon metabolism. Serine becomes a major source of NADH when cellular respiration is inhibited, and the un-utilized, accumulated NADH inhibits the TCA cycle and slows proliferation. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.03.012

    authors: Maynard AG,Kanarek N

    更新日期:2020-04-07 00:00:00

  • Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis.

    abstract::Leptin activates the long form of the leptin receptor (LRb) to control feeding and neuroendocrine function and thus regulate adiposity. While adiposity influences insulin sensitivity, leptin also regulates glucose homeostasis independently of energy balance. Disruption of the LRb/STAT3 signal in s/s mice results in hy...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.02.001

    authors: Bates SH,Kulkarni RN,Seifert M,Myers MG Jr

    更新日期:2005-03-01 00:00:00

  • Movin' on up: adipocytes become regulators of nutrient homeostasis.

    abstract::By locally infecting epididymal adipocytes of obese diabetic mice with the uncoupling protein-1 transgene, Yamada et al. (2006[this issue of Cell Metabolism]) unexpectedly induce leptin sensitivity with hypophagia and improvement in abnormal glucose and lipid abnormalities. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2006.02.005

    authors: Unger RH,Elmquist JK

    更新日期:2006-03-01 00:00:00

  • The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation.

    abstract::Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demon...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.08.009

    authors: el Azzouzi H,Leptidis S,Dirkx E,Hoeks J,van Bree B,Brand K,McClellan EA,Poels E,Sluimer JC,van den Hoogenhof MM,Armand AS,Yin X,Langley S,Bourajjaj M,Olieslagers S,Krishnan J,Vooijs M,Kurihara H,Stubbs A,Pinto YM,

    更新日期:2013-09-03 00:00:00

  • Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome.

    abstract::Although the concept of Syndrome X was introduced in the Banting Medal address of 1988 (Reaven, 1988), the notion that led to its genesis had started approximately 50 years earlier. In this short history, an attempt will be made to trace the two paths of scientific discovery that were formally merged in New Orleans in...

    journal_title:Cell metabolism

    pub_type: 历史文章,杂志文章

    doi:10.1016/j.cmet.2004.12.001

    authors: Reaven GM

    更新日期:2005-01-01 00:00:00

  • The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function.

    abstract::CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in viv...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.05.004

    authors: Macintyre AN,Gerriets VA,Nichols AG,Michalek RD,Rudolph MC,Deoliveira D,Anderson SM,Abel ED,Chen BJ,Hale LP,Rathmell JC

    更新日期:2014-07-01 00:00:00

  • Clking on PGC-1alpha to inhibit gluconeogenesis.

    abstract::The link between Akt activation and gluconeogenic repression remains unclear, despite many years of investigation and remarkable progress. Rodgers and colleagues now introduce us to the Clk2 kinase, an Akt substrate that can directly phosphorylate and inhibit PGC-1alpha, blunting hepatic glucose production. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.12.003

    authors: Cantó C,Auwerx J

    更新日期:2010-01-01 00:00:00

  • Palatability Can Drive Feeding Independent of AgRP Neurons.

    abstract::Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.07.011

    authors: Denis RG,Joly-Amado A,Webber E,Langlet F,Schaeffer M,Padilla SL,Cansell C,Dehouck B,Castel J,Delbès AS,Martinez S,Lacombe A,Rouch C,Kassis N,Fehrentz JA,Martinez J,Verdié P,Hnasko TS,Palmiter RD,Krashes MJ,Güler A

    更新日期:2015-10-06 00:00:00

  • Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals.

    abstract::"Beige" adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervat...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.08.005

    authors: Zhu Y,Gao Y,Tao C,Shao M,Zhao S,Huang W,Yao T,Johnson JA,Liu T,Cypess AM,Gupta O,Holland WL,Gupta RK,Spray DC,Tanowitz HB,Cao L,Lynes MD,Tseng YH,Elmquist JK,Williams KW,Lin HV,Scherer PE

    更新日期:2016-09-13 00:00:00

  • Light activates the adrenal gland: timing of gene expression and glucocorticoid release.

    abstract::Light is a powerful synchronizer of the circadian rhythms, and bright light therapy is known to improve metabolic and hormonal status of circadian rhythm sleep disorders, although its mechanism is poorly understood. In the present study, we revealed that light induces gene expression in the adrenal gland via the supra...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.09.009

    authors: Ishida A,Mutoh T,Ueyama T,Bando H,Masubuchi S,Nakahara D,Tsujimoto G,Okamura H

    更新日期:2005-11-01 00:00:00

  • The geometry of leptin action in the brain: more complicated than a simple ARC.

    abstract::Leptin signals the repletion of fat stores, acting in the CNS to permit energy utilization by a host of autonomic and neuroendocrine processes and to decrease feeding. While much recent research has focused on the leptin-regulated circuitry of the hypothalamic arcuate nucleus (ARC), the majority of brain leptin recept...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2008.12.001

    authors: Myers MG Jr,Münzberg H,Leinninger GM,Leshan RL

    更新日期:2009-02-01 00:00:00

  • Transcriptional regulation of adipogenesis by KLF4.

    abstract::While adipogenesis is known to be controlled by a complex network of transcription factors, less is known about the transcriptional cascade that initiates this process. We report here the characterization of Krüppel-like factor 4 (KLF4) as an essential early regulator of adipogenesis. Klf4 is expressed in 3T3-L1 cells...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.02.001

    authors: Birsoy K,Chen Z,Friedman J

    更新日期:2008-04-01 00:00:00

  • Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain.

    abstract::Leptin secreted by adipocytes acts on the brain to reduce food intake by regulating neuronal activity in the mediobasal hypothalamus (MBH). Obesity is associated with resistance to high circulating leptin levels. Here, we demonstrate that peripherally administered leptin activates its receptor (LepR) in median eminenc...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.12.015

    authors: Balland E,Dam J,Langlet F,Caron E,Steculorum S,Messina A,Rasika S,Falluel-Morel A,Anouar Y,Dehouck B,Trinquet E,Jockers R,Bouret SG,Prévot V

    更新日期:2014-02-04 00:00:00

  • Microglia Metabolic Breakdown Drives Alzheimer's Pathology.

    abstract::Altered metabolic function is common in stressed immune cells, but alteration in brain microglia during neurodegeneration is not understood. In this issue, Baik et al. (2019) provide insight into microglial metabolism. They demonstrate a switch from oxidative phosphorylation to glycolysis following interaction with am...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2019.08.017

    authors: Bennett FC,Liddelow SA

    更新日期:2019-09-03 00:00:00

  • Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    abstract::Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differe...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.03.016

    authors: Coloff JL,Murphy JP,Braun CR,Harris IS,Shelton LM,Kami K,Gygi SP,Selfors LM,Brugge JS

    更新日期:2016-05-10 00:00:00

  • Getting Warmer: Following One's Gut to Build Bone.

    abstract::In this issue of the Cell Metabolism, Chevalier et al. show that a warm environment produces changes in the composition of intestinal microbiota and that these changes can prevent bone loss due to hypogonadism. Dovetailing with prior studies on the ability of probiotics to reverse hypogonadism-induced osteopenia, the ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.09.010

    authors: Iqbal J,Yuen T,Zaidi M

    更新日期:2020-10-06 00:00:00

  • MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2.

    abstract::Repression of mitochondrial respiration represents an evolutionarily ancient cellular adaptation to hypoxia and profoundly influences cell survival and function; however, the underlying molecular mechanisms are incompletely understood. Primarily utilizing pulmonary arterial endothelial cells as a representative hypoxi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.08.015

    authors: Chan SY,Zhang YY,Hemann C,Mahoney CE,Zweier JL,Loscalzo J

    更新日期:2009-10-01 00:00:00

  • DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    abstract::Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.04.008

    authors: Park SJ,Gavrilova O,Brown AL,Soto JE,Bremner S,Kim J,Xu X,Yang S,Um JH,Koch LG,Britton SL,Lieber RL,Philp A,Baar K,Kohama SG,Abel ED,Kim MK,Chung JH

    更新日期:2017-05-02 00:00:00

  • Ligand Activation of ERRα by Cholesterol Mediates Statin and Bisphosphonate Effects.

    abstract::Nuclear receptors (NRs) are key regulators of gene expression and physiology. Nearly half of all human NRs lack endogenous ligands including estrogen-related receptor α (ERRα). ERRα has important roles in cancer, metabolism, and skeletal homeostasis. Affinity chromatography of tissue lipidomes with the ERRα ligand-bin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.12.010

    authors: Wei W,Schwaid AG,Wang X,Wang X,Chen S,Chu Q,Saghatelian A,Wan Y

    更新日期:2016-03-08 00:00:00

  • Toward a Molecular Definition of Leucine-Dependent mTORC1 Activation.

    abstract::The mechanistic target of rapamycin complex 1 (mTORC1) coordinates nutrient availability with cell growth. Recent reports by Sabatini and coworkers (Saxton et al., 2016; Wolfson et al., 2016) characterize a cytoplasmic amino acid receptor that couples the binding of leucine to the activation of mTORC1. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.02.012

    authors: Abraham RT

    更新日期:2016-03-08 00:00:00

  • The liver--a potential new player in islet regeneration?

    abstract::Pancreatic islet beta cell mass expands in response to certain physiological conditions such as pregnancy and obesity, but the signaling pathways involved are not well understood. Possible insights come from a newly described regulatory circuit through which obesity-enhanced kinase signaling in the liver triggers expa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.12.009

    authors: Moss LG,Newgard CB

    更新日期:2009-01-07 00:00:00

  • Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production.

    abstract::Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secreti...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.04.012

    authors: Cao H,Sekiya M,Ertunc ME,Burak MF,Mayers JR,White A,Inouye K,Rickey LM,Ercal BC,Furuhashi M,Tuncman G,Hotamisligil GS

    更新日期:2013-05-07 00:00:00

  • Exercise Metabolism.

    abstract::As a preview of the upcoming Cell Symposium on Exercise Metabolism in Gothenburg, Sweden, May 21-23 (http://cell-symposia.com/exercisemetabolism-2017/), several of our speakers and other Cell Press exercise enthusiasts share a wide range of experiences from bench pressing goals to bench research insights. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.04.024

    authors:

    更新日期:2017-05-02 00:00:00

  • The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.

    abstract::We sequenced Drosophila head RNA to identify a small set of miRNAs that undergo robust circadian cycling. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights off. The cluster pri-miRNA is transcribed under bona fide circadian transcriptional control, and all six mature mi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.10.002

    authors: Vodala S,Pescatore S,Rodriguez J,Buescher M,Chen YW,Weng R,Cohen SM,Rosbash M

    更新日期:2012-11-07 00:00:00

  • Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata.

    abstract::The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid poly...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.08.013

    authors: Wasserfall C,Nick HS,Campbell-Thompson M,Beachy D,Haataja L,Kusmartseva I,Posgai A,Beery M,Rhodes C,Bonifacio E,Arvan P,Atkinson M

    更新日期:2017-09-05 00:00:00

  • Wip1-dependent regulation of autophagy, obesity, and atherosclerosis.

    abstract::Obesity and atherosclerosis-related diseases account for over one-third of deaths in the western world. Controlling these conditions remains a major challenge due to an incomplete understanding of the molecular pathways involved. Here, we show that Wip1 phosphatase, a known negative regulator of Atm-dependent signalin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.06.003

    authors: Le Guezennec X,Brichkina A,Huang YF,Kostromina E,Han W,Bulavin DV

    更新日期:2012-07-03 00:00:00