Ligand Activation of ERRα by Cholesterol Mediates Statin and Bisphosphonate Effects.

Abstract:

:Nuclear receptors (NRs) are key regulators of gene expression and physiology. Nearly half of all human NRs lack endogenous ligands including estrogen-related receptor α (ERRα). ERRα has important roles in cancer, metabolism, and skeletal homeostasis. Affinity chromatography of tissue lipidomes with the ERRα ligand-binding domain (LBD) and subsequent transcriptional assays identified cholesterol as an endogenous ERRα agonist. Perturbation of cholesterol biosynthesis or inhibition of ERRα revealed the interdependence of cholesterol and ERRα. In bone, the effects of cholesterol, statin, and bisphosphonate on osteoclastogenesis require ERRα; and consequently, cholesterol-induced bone loss or bisphosphonate osteoprotection is lost in ERRα knockout mice. Furthermore, statin induction of muscle toxicity and cholesterol suppression of macrophage cytokine secretion are impaired by loss or inhibition of ERRα. These findings reveal a key step in ERRα regulation and explain the actions of two highly prescribed drugs, statins and bisphosphonates.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Wei W,Schwaid AG,Wang X,Wang X,Chen S,Chu Q,Saghatelian A,Wan Y

doi

10.1016/j.cmet.2015.12.010

subject

Has Abstract

pub_date

2016-03-08 00:00:00

pages

479-91

issue

3

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(15)00625-7

journal_volume

23

pub_type

杂志文章
  • Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis.

    abstract::Adipocyte mobilization of fatty acids (lipolysis) is instrumental for energy expenditure. Lipolysis displays both spontaneous (basal) and hormone-stimulated activity. It is unknown if lipolysis is important for future body weight gain and associated disturbed glucose metabolism, and this was presently investigated in ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.05.004

    authors: Arner P,Andersson DP,Bäckdahl J,Dahlman I,Rydén M

    更新日期:2018-07-03 00:00:00

  • Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling.

    abstract::Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation o...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.11.005

    authors: Steinberg GR,Michell BJ,van Denderen BJ,Watt MJ,Carey AL,Fam BC,Andrikopoulos S,Proietto J,Görgün CZ,Carling D,Hotamisligil GS,Febbraio MA,Kay TW,Kemp BE

    更新日期:2006-12-01 00:00:00

  • mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc.

    abstract::Aerobic glycolysis (the Warburg effect) is a core hallmark of cancer, but the molecular mechanisms underlying it remain unclear. Here, we identify an unexpected central role for mTORC2 in cancer metabolic reprogramming where it controls glycolytic metabolism by ultimately regulating the cellular level of c-Myc. We sho...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.09.013

    authors: Masui K,Tanaka K,Akhavan D,Babic I,Gini B,Matsutani T,Iwanami A,Liu F,Villa GR,Gu Y,Campos C,Zhu S,Yang H,Yong WH,Cloughesy TF,Mellinghoff IK,Cavenee WK,Shaw RJ,Mischel PS

    更新日期:2013-11-05 00:00:00

  • Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor.

    abstract::Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairme...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.04.010

    authors: Rose AJ,Berriel Díaz M,Reimann A,Klement J,Walcher T,Krones-Herzig A,Strobel O,Werner J,Peters A,Kleyman A,Tuckermann JP,Vegiopoulos A,Herzig S

    更新日期:2011-07-06 00:00:00

  • Can exercise mimetics substitute for exercise?

    abstract::Exercise leads to changes in muscle phenotype with important implications for exercise performance and health. A recent paper in Cell by Narkar et al. (2008) shows that many of the adaptations in muscle phenotype elicited by exercise can be mimicked by genetic manipulation and drug treatment in mice. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.07.004

    authors: Richter EA,Kiens B,Wojtaszewski JF

    更新日期:2008-08-01 00:00:00

  • Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals.

    abstract::Obese adipose tissue is characterized by infiltration of macrophages. We and others recently showed that a specific subset of macrophages is recruited to obese adipose and muscle tissue. This subset expresses CD11c and produces high levels of proinflammatory cytokines that are linked to the development of obesity-asso...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.08.015

    authors: Patsouris D,Li PP,Thapar D,Chapman J,Olefsky JM,Neels JG

    更新日期:2008-10-01 00:00:00

  • Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults.

    abstract::Neuropeptide Y (NPY) is a potent orexigenic neuropeptide, and antagonism of NPY Y1 and NPY Y5 receptors (NPYxR) is considered a potentially important anti-obesity drug target. We tested the hypothesis that blockade of the NPY5R will lead to weight loss in humans using MK-0557, a potent, highly selective, orally active...

    journal_title:Cell metabolism

    pub_type: 杂志文章,多中心研究,随机对照试验

    doi:10.1016/j.cmet.2006.08.002

    authors: Erondu N,Gantz I,Musser B,Suryawanshi S,Mallick M,Addy C,Cote J,Bray G,Fujioka K,Bays H,Hollander P,Sanabria-Bohórquez SM,Eng W,Långström B,Hargreaves RJ,Burns HD,Kanatani A,Fukami T,MacNeil DJ,Gottesdiener KM,Ama

    更新日期:2006-10-01 00:00:00

  • Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain.

    abstract::Leptin secreted by adipocytes acts on the brain to reduce food intake by regulating neuronal activity in the mediobasal hypothalamus (MBH). Obesity is associated with resistance to high circulating leptin levels. Here, we demonstrate that peripherally administered leptin activates its receptor (LepR) in median eminenc...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.12.015

    authors: Balland E,Dam J,Langlet F,Caron E,Steculorum S,Messina A,Rasika S,Falluel-Morel A,Anouar Y,Dehouck B,Trinquet E,Jockers R,Bouret SG,Prévot V

    更新日期:2014-02-04 00:00:00

  • Identification of a protein mediating respiratory supercomplex stability.

    abstract::The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory s...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.02.006

    authors: Chen YC,Taylor EB,Dephoure N,Heo JM,Tonhato A,Papandreou I,Nath N,Denko NC,Gygi SP,Rutter J

    更新日期:2012-03-07 00:00:00

  • Inhibition of PKCepsilon improves glucose-stimulated insulin secretion and reduces insulin clearance.

    abstract::In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dys...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.08.012

    authors: Schmitz-Peiffer C,Laybutt DR,Burchfield JG,Gurisik E,Narasimhan S,Mitchell CJ,Pedersen DJ,Braun U,Cooney GJ,Leitges M,Biden TJ

    更新日期:2007-10-01 00:00:00

  • Iron and diabetes risk.

    abstract::Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions-hereditary hemochromatosis and thalassemia-but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β cell failur...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2013.02.007

    authors: Simcox JA,McClain DA

    更新日期:2013-03-05 00:00:00

  • Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production.

    abstract::Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secreti...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.04.012

    authors: Cao H,Sekiya M,Ertunc ME,Burak MF,Mayers JR,White A,Inouye K,Rickey LM,Ercal BC,Furuhashi M,Tuncman G,Hotamisligil GS

    更新日期:2013-05-07 00:00:00

  • Hypoxia-independent angiogenesis in adipose tissues during cold acclimation.

    abstract::The molecular mechanisms of angiogenesis in relation to adipose tissue metabolism remain poorly understood. Here, we show that exposure of mice to cold led to activation of angiogenesis in both white and brown adipose tissues. In the inguinal depot, cold exposure resulted in elevated expression levels of brown-fat-ass...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.11.009

    authors: Xue Y,Petrovic N,Cao R,Larsson O,Lim S,Chen S,Feldmann HM,Liang Z,Zhu Z,Nedergaard J,Cannon B,Cao Y

    更新日期:2009-01-07 00:00:00

  • Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells.

    abstract::Accumulation of unfolded protein within the endoplasmic reticulum (ER) attenuates mRNA translation through PERK-mediated phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2alpha). To elucidate the role of eIF2alpha phosphorylation, we engineered mice for conditional expression of homo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.06.002

    authors: Back SH,Scheuner D,Han J,Song B,Ribick M,Wang J,Gildersleeve RD,Pennathur S,Kaufman RJ

    更新日期:2009-07-01 00:00:00

  • GDF15-From Biomarker to Allostatic Hormone.

    abstract::With the identification of its receptor in a highly specific region of the brain, interesting issues come to light regarding the normal physiological functions of GDF15, a secreted protein long identified as a biomarker of diverse disease states. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2017.10.017

    authors: O'Rahilly S

    更新日期:2017-12-05 00:00:00

  • Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile.

    abstract::C. difficile infection is a deadly disease that is influenced by the microbiome. In a recent article in Nature, Buffie et al. (2014) demonstrate that the ability of C. scindens to synthesize secondary bile acids is crucial to providing resistance to C. difficile infection. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.12.016

    authors: Greathouse KL,Harris CC,Bultman SJ

    更新日期:2015-01-06 00:00:00

  • Movin' on up: adipocytes become regulators of nutrient homeostasis.

    abstract::By locally infecting epididymal adipocytes of obese diabetic mice with the uncoupling protein-1 transgene, Yamada et al. (2006[this issue of Cell Metabolism]) unexpectedly induce leptin sensitivity with hypophagia and improvement in abnormal glucose and lipid abnormalities. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2006.02.005

    authors: Unger RH,Elmquist JK

    更新日期:2006-03-01 00:00:00

  • Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase.

    abstract::Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.07.013

    authors: Krahmer N,Guo Y,Wilfling F,Hilger M,Lingrell S,Heger K,Newman HW,Schmidt-Supprian M,Vance DE,Mann M,Farese RV Jr,Walther TC

    更新日期:2011-10-05 00:00:00

  • Fasting the Microbiota to Improve Metabolism?

    abstract::While intermittent or periodic fasting provides a variety of favorable health benefits, the molecular mediators of these effects are poorly understood. In this issue of Cell Metabolism, Li and colleagues (2017) highlight the role of gut microbiota in mediating benefits of intermittent fasting through activation of adi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.09.013

    authors: Haas JT,Staels B

    更新日期:2017-10-03 00:00:00

  • Purloined mechanisms of bacterial immunity can cure muscular dystrophy.

    abstract::Myriad strategies have been explored to compensate for the lack of dystrophin or to skip mutations that cause the lethal disease Duchenne muscular dystrophy (DMD). A new study shows that gene editing strategies used by bacteria can be applied in zygotes of a mouse model of DMD to correct the genetic defect that causes...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.11.011

    authors: Tidball JG,Bertoni C

    更新日期:2014-12-02 00:00:00

  • Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding.

    abstract::The essential role of the brain in maintaining energy homeostasis has motivated the drive to define the neural circuitry that integrates external and internal stimuli to enact appropriate and consequential metabolic and behavioral responses. The hypothalamus has received significant attention in this regard given its ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2015.09.026

    authors: Waterson MJ,Horvath TL

    更新日期:2015-12-01 00:00:00

  • Bypassing Intestinal Sugar Enhancement of Sweet Appetite.

    abstract::Intestinal sugar sensing has an appetite-stimulating action that enhances preferences for sweets. Han et al. (2016) report that duodenal-jejunal bypass surgery reduces sweet appetite by reducing sugar-induced dopamine release in the dorsal striatum. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2015.12.013

    authors: Sclafani A

    更新日期:2016-01-12 00:00:00

  • Mealtime Is NONO Speckled: Timing Hepatic Adaptation to Food.

    abstract::You are what you eat; but when you eat also seems to be important for a healthy metabolism. In this issue of Cell Metabolism, Benegiamo et al. (2018) uncover a mechanism by which the RNA-binding protein NONO promotes the time-of-day-dependent expression of key metabolic genes at a post-transcriptional level in respons...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.01.009

    authors: Torres M,Kramer A

    更新日期:2018-02-06 00:00:00

  • A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition.

    abstract::Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.06.001

    authors: Wan M,Leavens KF,Hunter RW,Koren S,von Wilamowitz-Moellendorff A,Lu M,Satapati S,Chu Q,Sakamoto K,Burgess SC,Birnbaum MJ

    更新日期:2013-07-02 00:00:00

  • Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis.

    abstract::Leptin activates the long form of the leptin receptor (LRb) to control feeding and neuroendocrine function and thus regulate adiposity. While adiposity influences insulin sensitivity, leptin also regulates glucose homeostasis independently of energy balance. Disruption of the LRb/STAT3 signal in s/s mice results in hy...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.02.001

    authors: Bates SH,Kulkarni RN,Seifert M,Myers MG Jr

    更新日期:2005-03-01 00:00:00

  • Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging.

    abstract::Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and deplet...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.05.014

    authors: Andersson DC,Betzenhauser MJ,Reiken S,Meli AC,Umanskaya A,Xie W,Shiomi T,Zalk R,Lacampagne A,Marks AR

    更新日期:2011-08-03 00:00:00

  • Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice.

    abstract::XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream e...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.09.004

    authors: So JS,Hur KY,Tarrio M,Ruda V,Frank-Kamenetsky M,Fitzgerald K,Koteliansky V,Lichtman AH,Iwawaki T,Glimcher LH,Lee AH

    更新日期:2012-10-03 00:00:00

  • The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis.

    abstract::Signaling cascades during adipogenesis culminate in the expression of two essential adipogenic factors, PPARgamma and C/EBPalpha. Here we demonstrate that the IRE1alpha-XBP1 pathway, the most conserved branch of the unfolded protein response (UPR), is indispensable for adipogenesis. Indeed, XBP1-deficient mouse embryo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.04.009

    authors: Sha H,He Y,Chen H,Wang C,Zenno A,Shi H,Yang X,Zhang X,Qi L

    更新日期:2009-06-01 00:00:00

  • Leptin, BMI, and a Metabolic Gene Expression Signature Associated with Clinical Outcome to VEGF Inhibition in Colorectal Cancer.

    abstract::VEGF (vascular endothelial growth factor) signaling inhibitors are widely used in different cancer types; however, patient selection remains a challenge. Analyses of samples from a phase III clinical trial in metastatic colorectal cancer testing chemotherapy versus chemotherapy with the small molecule VEGF receptors i...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.10.015

    authors: Pommier AJ,Farren M,Patel B,Wappett M,Michopoulos F,Smith NR,Kendrew J,Frith J,Huby R,Eberlein C,Campbell H,Womack C,Smith PD,Robertson J,Morgan S,Critchlow SE,Barry ST

    更新日期:2016-01-12 00:00:00

  • Adipose Dendritic Cells Come Out of Hiding.

    abstract::In this issue of Cell Metabolism, Macdougall et al. (2018) identify two subsets of conventional dendritic cells in visceral adipose tissue and demonstrate that these subsets engage distinct adipocyte-associated signaling pathways to drive their tolerogenic phenotypes in the lean state. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.02.014

    authors: LaMarche NM,Lynch L

    更新日期:2018-03-06 00:00:00