The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation.

Abstract:

:Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demonstrate that under hemodynamic stress, cardiac hypoxia activates DNM3os, a noncoding transcript that harbors the microRNA cluster miR-199a∼214, which shares PPARδ as common target. To address the significance of miR-199a∼214 induction and concomitant PPARδ repression, we performed antagomir-based silencing of both microRNAs and subjected mice to biomechanical stress to induce heart failure. Remarkably, antagomir-treated animals displayed improved cardiac function and restored mitochondrial fatty acid oxidation. Taken together, our data suggest a mechanism whereby miR-199a∼214 actively represses cardiac PPARδ expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of heart failure.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

el Azzouzi H,Leptidis S,Dirkx E,Hoeks J,van Bree B,Brand K,McClellan EA,Poels E,Sluimer JC,van den Hoogenhof MM,Armand AS,Yin X,Langley S,Bourajjaj M,Olieslagers S,Krishnan J,Vooijs M,Kurihara H,Stubbs A,Pinto YM,

doi

10.1016/j.cmet.2013.08.009

subject

Has Abstract

pub_date

2013-09-03 00:00:00

pages

341-54

issue

3

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(13)00335-5

journal_volume

18

pub_type

杂志文章
  • The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle.

    abstract::Nuclear receptor signaling plays an important role in energy metabolism. In this study we demonstrate that the nuclear receptor corepressor RIP140 is a key regulator of metabolism in skeletal muscle. RIP140 is expressed in a fiber type-specific manner, and manipulation of its levels in null, heterozygous, and transgen...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.08.004

    authors: Seth A,Steel JH,Nichol D,Pocock V,Kumaran MK,Fritah A,Mobberley M,Ryder TA,Rowlerson A,Scott J,Poutanen M,White R,Parker M

    更新日期:2007-09-01 00:00:00

  • Dynamics of an Aging Genome.

    abstract::The genetic mechanisms mediating longevity and maximum lifespan of the human species are likely different than those explaining differences in life expectancy and healthspan across individuals. Both of these perspectives are important and can be separated and explored using genomic data. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.06.002

    authors: Telenti A,Perkins BA,Venter JC

    更新日期:2016-06-14 00:00:00

  • Diabetes and insulin in regulation of brain cholesterol metabolism.

    abstract::The brain is the most cholesterol-rich organ in the body, most of which comes from in situ synthesis. Here we demonstrate that in insulin-deficient diabetic mice, there is a reduction in expression of the major transcriptional regulator of cholesterol metabolism, SREBP-2, and its downstream genes in the hypothalamus a...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.11.006

    authors: Suzuki R,Lee K,Jing E,Biddinger SB,McDonald JG,Montine TJ,Craft S,Kahn CR

    更新日期:2010-12-01 00:00:00

  • Identification of a protein mediating respiratory supercomplex stability.

    abstract::The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory s...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.02.006

    authors: Chen YC,Taylor EB,Dephoure N,Heo JM,Tonhato A,Papandreou I,Nath N,Denko NC,Gygi SP,Rutter J

    更新日期:2012-03-07 00:00:00

  • Palatability Can Drive Feeding Independent of AgRP Neurons.

    abstract::Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.07.011

    authors: Denis RG,Joly-Amado A,Webber E,Langlet F,Schaeffer M,Padilla SL,Cansell C,Dehouck B,Castel J,Delbès AS,Martinez S,Lacombe A,Rouch C,Kassis N,Fehrentz JA,Martinez J,Verdié P,Hnasko TS,Palmiter RD,Krashes MJ,Güler A

    更新日期:2015-10-06 00:00:00

  • One-Carbon Metabolism in Health and Disease.

    abstract::One-carbon (1C) metabolism, mediated by the folate cofactor, supports multiple physiological processes. These include biosynthesis (purines and thymidine), amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance, and redox defense. Both within eukaryotic cells and across organs, 1C metabolic r...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2016.08.009

    authors: Ducker GS,Rabinowitz JD

    更新日期:2017-01-10 00:00:00

  • A macrophage sterol-responsive network linked to atherogenesis.

    abstract::Cholesteryl ester accumulation by macrophages is a critical early event in atherogenesis. To test the hypothesis that sterol loading promotes foam cell formation and vascular disease by perturbing a network of interacting proteins, we used a global approach to identify proteins that are differentially expressed when m...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.01.003

    authors: Becker L,Gharib SA,Irwin AD,Wijsman E,Vaisar T,Oram JF,Heinecke JW

    更新日期:2010-02-03 00:00:00

  • BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response.

    abstract::Studying ciliopathies, like the Bardet-Biedl syndrome (BBS), allow the identification of signaling pathways potentially involved in common diseases, sharing phenotypic features like obesity or type 2 diabetes. Given the close association between obesity and insulin resistance, obese BBS patients would be expected to b...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.08.005

    authors: Marion V,Mockel A,De Melo C,Obringer C,Claussmann A,Simon A,Messaddeq N,Durand M,Dupuis L,Loeffler JP,King P,Mutter-Schmidt C,Petrovsky N,Stoetzel C,Dollfus H

    更新日期:2012-09-05 00:00:00

  • The emerging genetic architecture of type 2 diabetes.

    abstract::Type 2 diabetes is a genetically heterogeneous disease, with several relatively rare monogenic forms and a number of more common forms resulting from a complex interaction of genetic and environmental factors. Previous studies using a candidate gene approach, family linkage studies, and gene expression profiling uncov...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2008.08.006

    authors: Doria A,Patti ME,Kahn CR

    更新日期:2008-09-01 00:00:00

  • The liver--a potential new player in islet regeneration?

    abstract::Pancreatic islet beta cell mass expands in response to certain physiological conditions such as pregnancy and obesity, but the signaling pathways involved are not well understood. Possible insights come from a newly described regulatory circuit through which obesity-enhanced kinase signaling in the liver triggers expa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.12.009

    authors: Moss LG,Newgard CB

    更新日期:2009-01-07 00:00:00

  • Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety.

    abstract::Despite the prevalence of obesity and its related diseases, the signaling pathways for appetite control and satiety are not clearly understood. Here we report C. elegans quiescence behavior, a cessation of food intake and movement that is possibly a result of satiety. C. elegans quiescence shares several characteristi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.01.005

    authors: You YJ,Kim J,Raizen DM,Avery L

    更新日期:2008-03-01 00:00:00

  • Quantitative Fluxomics of Circulating Metabolites.

    abstract::Mammalian organs are nourished by nutrients carried by the blood circulation. These nutrients originate from diet and internal stores, and can undergo various interconversions before their eventual use as tissue fuel. Here we develop isotope tracing, mass spectrometry, and mathematical analysis methods to determine th...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.07.013

    authors: Hui S,Cowan AJ,Zeng X,Yang L,TeSlaa T,Li X,Bartman C,Zhang Z,Jang C,Wang L,Lu W,Rojas J,Baur J,Rabinowitz JD

    更新日期:2020-10-06 00:00:00

  • The Limits of Exercise Physiology: From Performance to Health.

    abstract::Many of the established positive health benefits of exercise have been documented by historical discoveries in the field of exercise physiology. These investigations often assess limits: the limits of performance, or the limits of exercise-induced health benefits. Indeed, several key findings have been informed by stu...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2017.04.018

    authors: Gabriel BM,Zierath JR

    更新日期:2017-05-02 00:00:00

  • Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production.

    abstract::Proper control of hepatic glucose production is central to whole-body glucose homeostasis, and its disruption plays a major role in diabetes. Here, we demonstrate that although established as an intracellular lipid chaperone, aP2 is in fact actively secreted from adipocytes to control liver glucose metabolism. Secreti...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.04.012

    authors: Cao H,Sekiya M,Ertunc ME,Burak MF,Mayers JR,White A,Inouye K,Rickey LM,Ercal BC,Furuhashi M,Tuncman G,Hotamisligil GS

    更新日期:2013-05-07 00:00:00

  • Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding.

    abstract::The essential role of the brain in maintaining energy homeostasis has motivated the drive to define the neural circuitry that integrates external and internal stimuli to enact appropriate and consequential metabolic and behavioral responses. The hypothalamus has received significant attention in this regard given its ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2015.09.026

    authors: Waterson MJ,Horvath TL

    更新日期:2015-12-01 00:00:00

  • Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function.

    abstract::The trace element copper (Cu) is a cofactor for biochemical functions ranging from energy generation to iron (Fe) acquisition, angiogenesis, and free radical detoxification. While Cu is essential for life, the molecules that mediate dietary Cu uptake have not been identified. Ctr1 is a homotrimeric protein, conserved ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.08.009

    authors: Nose Y,Kim BE,Thiele DJ

    更新日期:2006-09-01 00:00:00

  • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.

    abstract::Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.04.003

    authors: Price NL,Gomes AP,Ling AJ,Duarte FV,Martin-Montalvo A,North BJ,Agarwal B,Ye L,Ramadori G,Teodoro JS,Hubbard BP,Varela AT,Davis JG,Varamini B,Hafner A,Moaddel R,Rolo AP,Coppari R,Palmeira CM,de Cabo R,Baur JA,Sin

    更新日期:2012-05-02 00:00:00

  • Sodium Intake Regulates Glucose Homeostasis through the PPARδ/Adiponectin-Mediated SGLT2 Pathway.

    abstract::High sodium intake is a major risk factor for developing hypertension in diabetes. Promotion of sodium excretion reduces cardiometabolic lesions in diabetes. However, the interaction between sodium intake and glucose homeostasis remains elusive. Here, we report that high sodium intake remarkably increased natriuresis ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.02.019

    authors: Zhao Y,Gao P,Sun F,Li Q,Chen J,Yu H,Li L,Wei X,He H,Lu Z,Wei X,Wang B,Cui Y,Xiong S,Shang Q,Xu A,Huang Y,Liu D,Zhu Z

    更新日期:2016-04-12 00:00:00

  • Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans.

    abstract::The molecular transducers of benefits from different exercise modalities remain incompletely defined. Here we report that 12 weeks of high-intensity aerobic interval (HIIT), resistance (RT), and combined exercise training enhanced insulin sensitivity and lean mass, but only HIIT and combined training improved aerobic ...

    journal_title:Cell metabolism

    pub_type: 临床试验,杂志文章

    doi:10.1016/j.cmet.2017.02.009

    authors: Robinson MM,Dasari S,Konopka AR,Johnson ML,Manjunatha S,Esponda RR,Carter RE,Lanza IR,Nair KS

    更新日期:2017-03-07 00:00:00

  • Mitohormesis.

    abstract::For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been largely supplanted by the concept that mitochondria are fully integrated into the cell and that mitochondrial stresses rapidly activate cytosolic signaling pathways that ultimately alter nuc...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2014.01.011

    authors: Yun J,Finkel T

    更新日期:2014-05-06 00:00:00

  • Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile.

    abstract::C. difficile infection is a deadly disease that is influenced by the microbiome. In a recent article in Nature, Buffie et al. (2014) demonstrate that the ability of C. scindens to synthesize secondary bile acids is crucial to providing resistance to C. difficile infection. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.12.016

    authors: Greathouse KL,Harris CC,Bultman SJ

    更新日期:2015-01-06 00:00:00

  • Apoptotic Regulatory T Cells Retain Suppressive Function through Adenosine.

    abstract::Regulatory T cells maintain tolerance and prevent autoimmunity, but their suppressive effects can hinder immune responses against cancer. In Nature Immunology, Maj et al., 2017 report that regulatory T cells can execute these actions through the nucleoside adenosine even after cell death. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2017.12.013

    authors: Beier UH

    更新日期:2018-01-09 00:00:00

  • Snapin mediates incretin action and augments glucose-dependent insulin secretion.

    abstract::Impaired insulin secretion contributes to the pathogenesis of type 2 diabetes mellitus (T2DM). Treatment with the incretin hormone glucagon-like peptide-1 (GLP-1) potentiates insulin secretion and improves metabolic control in humans with T2DM. GLP-1 receptor-mediated signaling leading to insulin secretion occurs via ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.02.002

    authors: Song WJ,Seshadri M,Ashraf U,Mdluli T,Mondal P,Keil M,Azevedo M,Kirschner LS,Stratakis CA,Hussain MA

    更新日期:2011-03-02 00:00:00

  • Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk.

    abstract::The symbiotic gut microbiota modulate health and disease of the host through a series of transgenomic metabolic and immune regulatory axes. We explore connections between microbiome composition and function related to individual metabolic phenotypes and consider these interactions as possible targets for developing ne...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2012.10.007

    authors: Holmes E,Li JV,Marchesi JR,Nicholson JK

    更新日期:2012-11-07 00:00:00

  • Setting the tone: reactive oxygen species and the control of appetitive melanocortin neurons.

    abstract::The brain melanocortin system is a primary gateway through which energy balance is controlled. Diano and colleagues report a novel cellular mechanism mediated via reactive oxygen species (ROS) that regulates the activity of these melanocortin neurons in response to energy status, thereby modulating appetitive behavior...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.10.004

    authors: Rochford JJ,Myers MG Jr,Heisler LK

    更新日期:2011-11-02 00:00:00

  • Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice.

    abstract::The basis for region-specific neuronal toxicity in Huntington disease is unknown. Here, we show that region-specific neuronal vulnerability is a substrate-driven response in astrocytes. Glucose is low in HdhQ(150/150) animals, and astrocytes in each brain region adapt by metabolically reprogramming their mitochondria ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.03.004

    authors: Polyzos AA,Lee DY,Datta R,Hauser M,Budworth H,Holt A,Mihalik S,Goldschmidt P,Frankel K,Trego K,Bennett MJ,Vockley J,Xu K,Gratton E,McMurray CT

    更新日期:2019-06-04 00:00:00

  • Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata.

    abstract::The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid poly...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.08.013

    authors: Wasserfall C,Nick HS,Campbell-Thompson M,Beachy D,Haataja L,Kusmartseva I,Posgai A,Beery M,Rhodes C,Bonifacio E,Arvan P,Atkinson M

    更新日期:2017-09-05 00:00:00

  • Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.

    abstract::Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.06.010

    authors: Wang QP,Lin YQ,Zhang L,Wilson YA,Oyston LJ,Cotterell J,Qi Y,Khuong TM,Bakhshi N,Planchenault Y,Browman DT,Lau MT,Cole TA,Wong AC,Simpson SJ,Cole AR,Penninger JM,Herzog H,Neely GG

    更新日期:2016-07-12 00:00:00

  • A CRTCal link between energy and life span.

    abstract::Cutting down calories prolongs life, but how this works remains largely unknown. A recent study in Nature (Mair et al., 2011) shows that life span extension triggered by the energy-sensing protein kinase AMPK is mediated by an evolutionarily conserved transcriptional circuit involving CRTC-1 and CREB. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.03.012

    authors: Brunet A

    更新日期:2011-04-06 00:00:00

  • NAD+ Metabolism and Signaling.

    abstract::We caught up with some of the leading researchers in the NAD+ metabolism and signaling field as they gathered in Dublin for the 2019 FASEB Science Research Conference. Here they share their excitement from the rich history of NAD+ biology dating back over 100 years ago to a future of translation benefiting human healt...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.06.013

    authors:

    更新日期:2019-07-02 00:00:00