Apoptotic Regulatory T Cells Retain Suppressive Function through Adenosine.

Abstract:

:Regulatory T cells maintain tolerance and prevent autoimmunity, but their suppressive effects can hinder immune responses against cancer. In Nature Immunology, Maj et al., 2017 report that regulatory T cells can execute these actions through the nucleoside adenosine even after cell death.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Beier UH

doi

10.1016/j.cmet.2017.12.013

subject

Has Abstract

pub_date

2018-01-09 00:00:00

pages

5-7

issue

1

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(17)30726-X

journal_volume

27

pub_type

评论,杂志文章
  • Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling.

    abstract::In obesity, insulin resistance is linked to inflammation in several tissues. Although the gut is a very large lymphoid tissue, inflammation in the absorptive small intestine, the jejunum, where insulin regulates lipid and sugar absorption is unknown. We analyzed jejunal samples of 185 obese subjects stratified in thre...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.05.020

    authors: Monteiro-Sepulveda M,Touch S,Mendes-Sá C,André S,Poitou C,Allatif O,Cotillard A,Fohrer-Ting H,Hubert EL,Remark R,Genser L,Tordjman J,Garbin K,Osinski C,Sautès-Fridman C,Leturque A,Clément K,Brot-Laroche E

    更新日期:2015-07-07 00:00:00

  • VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications.

    abstract::Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.03.004

    authors: Robciuc MR,Kivelä R,Williams IM,de Boer JF,van Dijk TH,Elamaa H,Tigistu-Sahle F,Molotkov D,Leppänen VM,Käkelä R,Eklund L,Wasserman DH,Groen AK,Alitalo K

    更新日期:2016-04-12 00:00:00

  • Microglia Metabolic Breakdown Drives Alzheimer's Pathology.

    abstract::Altered metabolic function is common in stressed immune cells, but alteration in brain microglia during neurodegeneration is not understood. In this issue, Baik et al. (2019) provide insight into microglial metabolism. They demonstrate a switch from oxidative phosphorylation to glycolysis following interaction with am...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2019.08.017

    authors: Bennett FC,Liddelow SA

    更新日期:2019-09-03 00:00:00

  • Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging.

    abstract::Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and deplet...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.05.014

    authors: Andersson DC,Betzenhauser MJ,Reiken S,Meli AC,Umanskaya A,Xie W,Shiomi T,Zalk R,Lacampagne A,Marks AR

    更新日期:2011-08-03 00:00:00

  • Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity.

    abstract::Oxidative stress causes mitochondrial dysfunction and metabolic complications through unknown mechanisms. Cardiolipin (CL) is a key mitochondrial phospholipid required for oxidative phosphorylation. Oxidative damage to CL from pathological remodeling is implicated in the etiology of mitochondrial dysfunction commonly ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.07.003

    authors: Li J,Romestaing C,Han X,Li Y,Hao X,Wu Y,Sun C,Liu X,Jefferson LS,Xiong J,Lanoue KF,Chang Z,Lynch CJ,Wang H,Shi Y

    更新日期:2010-08-04 00:00:00

  • Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology.

    abstract::Humans exhibit remarkable interindividual variations in the concentration of small molecules found throughout the body, due in part to concurrent variations in each person's associated microbial communities. Recent studies have begun to uncover how microbes interface with their host during exposure to drugs, dietary c...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.07.002

    authors: Patterson AD,Turnbaugh PJ

    更新日期:2014-11-04 00:00:00

  • Food for Thought: Revisiting the Complexity of Food Intake.

    abstract::The ability of hormones such as insulin, leptin, and cholecystokinin to alter food intake is influenced by intricate interactions between homeostatic and non-homeostatic factors. Consequently, when administered exogenously, the likelihood of these hormones influencing food intake is probabilistic, leading to difficult...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.08.017

    authors: Woods SC,Begg DP

    更新日期:2015-09-01 00:00:00

  • Diabetes and insulin in regulation of brain cholesterol metabolism.

    abstract::The brain is the most cholesterol-rich organ in the body, most of which comes from in situ synthesis. Here we demonstrate that in insulin-deficient diabetic mice, there is a reduction in expression of the major transcriptional regulator of cholesterol metabolism, SREBP-2, and its downstream genes in the hypothalamus a...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.11.006

    authors: Suzuki R,Lee K,Jing E,Biddinger SB,McDonald JG,Montine TJ,Craft S,Kahn CR

    更新日期:2010-12-01 00:00:00

  • Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling.

    abstract::Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation o...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.11.005

    authors: Steinberg GR,Michell BJ,van Denderen BJ,Watt MJ,Carey AL,Fam BC,Andrikopoulos S,Proietto J,Görgün CZ,Carling D,Hotamisligil GS,Febbraio MA,Kay TW,Kemp BE

    更新日期:2006-12-01 00:00:00

  • Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase.

    abstract::Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.07.013

    authors: Krahmer N,Guo Y,Wilfling F,Hilger M,Lingrell S,Heger K,Newman HW,Schmidt-Supprian M,Vance DE,Mann M,Farese RV Jr,Walther TC

    更新日期:2011-10-05 00:00:00

  • miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.

    abstract::Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-12...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.01.005

    authors: Esau C,Davis S,Murray SF,Yu XX,Pandey SK,Pear M,Watts L,Booten SL,Graham M,McKay R,Subramaniam A,Propp S,Lollo BA,Freier S,Bennett CF,Bhanot S,Monia BP

    更新日期:2006-02-01 00:00:00

  • Iron and diabetes risk.

    abstract::Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions-hereditary hemochromatosis and thalassemia-but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β cell failur...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2013.02.007

    authors: Simcox JA,McClain DA

    更新日期:2013-03-05 00:00:00

  • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.

    abstract::SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.03.004

    authors: Bai P,Cantó C,Oudart H,Brunyánszki A,Cen Y,Thomas C,Yamamoto H,Huber A,Kiss B,Houtkooper RH,Schoonjans K,Schreiber V,Sauve AA,Menissier-de Murcia J,Auwerx J

    更新日期:2011-04-06 00:00:00

  • Energy intake and exercise as determinants of brain health and vulnerability to injury and disease.

    abstract::Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress-response signaling pathways in neu...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2012.08.012

    authors: Mattson MP

    更新日期:2012-12-05 00:00:00

  • Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export.

    abstract::CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-m...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.12.010

    authors: Wang K,Huang W,Chen R,Lin P,Zhang T,Ni YF,Li H,Wu J,Sun XX,Geng JJ,Zhu YM,Nan G,Zhang W,Chen X,Zhu P,Bian H,Chen ZN

    更新日期:2021-01-05 00:00:00

  • Fibrosis and adipose tissue dysfunction.

    abstract::Fibrosis is increasingly appreciated as a major player in adipose tissue dysfunction. In rapidly expanding adipose tissue, pervasive hypoxia leads to an induction of HIF1α that in turn leads to a potent profibrotic transcriptional program. The pathophysiological impact of adipose tissue fibrosis is likely to play an e...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2013.06.016

    authors: Sun K,Tordjman J,Clément K,Scherer PE

    更新日期:2013-10-01 00:00:00

  • Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations.

    abstract::Using molecular, biochemical, and untargeted stable isotope tracing approaches, we identify a previously unappreciated glutamine-derived α-ketoglutarate (αKG) energy-generating anaplerotic flux to be critical in mitochondrial DNA (mtDNA) mutant cells that harbor human disease-associated oxidative phosphorylation defec...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.03.002

    authors: Chen Q,Kirk K,Shurubor YI,Zhao D,Arreguin AJ,Shahi I,Valsecchi F,Primiano G,Calder EL,Carelli V,Denton TT,Beal MF,Gross SS,Manfredi G,D'Aurelio M

    更新日期:2018-05-01 00:00:00

  • LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    abstract::Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.01.009

    authors: Loh NY,Neville MJ,Marinou K,Hardcastle SA,Fielding BA,Duncan EL,McCarthy MI,Tobias JH,Gregson CL,Karpe F,Christodoulides C

    更新日期:2015-02-03 00:00:00

  • Clking on PGC-1alpha to inhibit gluconeogenesis.

    abstract::The link between Akt activation and gluconeogenic repression remains unclear, despite many years of investigation and remarkable progress. Rodgers and colleagues now introduce us to the Clk2 kinase, an Akt substrate that can directly phosphorylate and inhibit PGC-1alpha, blunting hepatic glucose production. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.12.003

    authors: Cantó C,Auwerx J

    更新日期:2010-01-01 00:00:00

  • Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets.

    abstract::Postnatal maintenance or regeneration of pancreatic beta cells is considered to occur exclusively via the replication of existing beta cells, but clinically meaningful restoration of human beta cell mass by proliferation has never been achieved. We discovered a population of immature beta cells that is present through...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.03.017

    authors: van der Meulen T,Mawla AM,DiGruccio MR,Adams MW,Nies V,Dólleman S,Liu S,Ackermann AM,Cáceres E,Hunter AE,Kaestner KH,Donaldson CJ,Huising MO

    更新日期:2017-04-04 00:00:00

  • MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2.

    abstract::Repression of mitochondrial respiration represents an evolutionarily ancient cellular adaptation to hypoxia and profoundly influences cell survival and function; however, the underlying molecular mechanisms are incompletely understood. Primarily utilizing pulmonary arterial endothelial cells as a representative hypoxi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.08.015

    authors: Chan SY,Zhang YY,Hemann C,Mahoney CE,Zweier JL,Loscalzo J

    更新日期:2009-10-01 00:00:00

  • Moving beyond GWAS and eQTL Analysis to Validated Hits in Chronic Kidney Disease.

    abstract::Genome-wide association studies (GWAS) have identified multiple chronic kidney disease (CKD)-associated single-nucleotide polymorphisms (SNPs) mainly localized to non-coding genomic regions. To understand which genes and which cell types are affected by these genetic variants, compartment-specific transcriptome, genom...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.12.009

    authors: Müller-Deile J,Jobst-Schwan T,Schiffer M

    更新日期:2019-01-08 00:00:00

  • Metabolic Effects of Dietary Nitrate in Health and Disease.

    abstract::Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), origi...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2018.06.007

    authors: Lundberg JO,Carlström M,Weitzberg E

    更新日期:2018-07-03 00:00:00

  • Leptin does not directly affect CNS serotonin neurons to influence appetite.

    abstract::Serotonin (5-HT) and leptin play important roles in the modulation of energy balance. Here we investigated mechanisms by which leptin might interact with CNS 5-HT pathways to influence appetite. Although some leptin receptor (LepRb) neurons lie close to 5-HT neurons in the dorsal raphe (DR), 5-HT neurons do not expres...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.03.016

    authors: Lam DD,Leinninger GM,Louis GW,Garfield AS,Marston OJ,Leshan RL,Scheller EL,Christensen L,Donato J Jr,Xia J,Evans ML,Elias C,Dalley JW,Burdakov DI,Myers MG Jr,Heisler LK

    更新日期:2011-05-04 00:00:00

  • Knock, knock to reset the clock: mechanosensation and circadian rhythms.

    abstract::Circadian clocks, which underlie the daily rhythms in virtually all organisms, are entrained by diurnal changes in light, temperature, nutrients, and even sound. Simoni et al. (2014) demonstrate that diurnal variation in mechanical vibrations can reset circadian clock phase, providing a potential mechanism for integra...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.04.011

    authors: van Alphen B,Allada R

    更新日期:2014-05-06 00:00:00

  • Central role of Mic10 in the mitochondrial contact site and cristae organizing system.

    abstract::The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis a...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.04.007

    authors: Bohnert M,Zerbes RM,Davies KM,Mühleip AW,Rampelt H,Horvath SE,Boenke T,Kram A,Perschil I,Veenhuis M,Kühlbrandt W,van der Klei IJ,Pfanner N,van der Laan M

    更新日期:2015-05-05 00:00:00

  • Apple or pear: size and shape matter.

    abstract::Obesity-related morbidity and mortality are related to fat accumulation and fat distribution in humans. Two large-scale meta-analyses recently published in Nature by Shungin et al. (2015) and Locke et al. (2015) report novel genetic associations for central and overall obesity; these greatly advance our understanding ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2015.03.016

    authors: Fu J,Hofker M,Wijmenga C

    更新日期:2015-04-07 00:00:00

  • The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis.

    abstract::Signaling cascades during adipogenesis culminate in the expression of two essential adipogenic factors, PPARgamma and C/EBPalpha. Here we demonstrate that the IRE1alpha-XBP1 pathway, the most conserved branch of the unfolded protein response (UPR), is indispensable for adipogenesis. Indeed, XBP1-deficient mouse embryo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.04.009

    authors: Sha H,He Y,Chen H,Wang C,Zenno A,Shi H,Yang X,Zhang X,Qi L

    更新日期:2009-06-01 00:00:00

  • Mealtime Is NONO Speckled: Timing Hepatic Adaptation to Food.

    abstract::You are what you eat; but when you eat also seems to be important for a healthy metabolism. In this issue of Cell Metabolism, Benegiamo et al. (2018) uncover a mechanism by which the RNA-binding protein NONO promotes the time-of-day-dependent expression of key metabolic genes at a post-transcriptional level in respons...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.01.009

    authors: Torres M,Kramer A

    更新日期:2018-02-06 00:00:00

  • Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation.

    abstract::Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of mic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.07.012

    authors: Koh A,Mannerås-Holm L,Yunn NO,Nilsson PM,Ryu SH,Molinaro A,Perkins R,Smith JG,Bäckhed F

    更新日期:2020-10-06 00:00:00