Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling.

Abstract:

:Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation of protein phosphatase 2C (PP2C). This in turn reduces ACC phosphorylation, suppressing fatty-acid oxidation, increasing intramuscular diacylglycerol accumulation, and causing insulin resistance in skeletal muscle, effects observed both in vitro and in vivo. Importantly even at pathologically elevated levels of TNFalpha observed in obesity, the suppressive effects of TNFalpha on AMPK signaling are reversed in mice null for both TNFR1 and 2 or following treatment with a TNFalpha neutralizing antibody. Our data demonstrate that AMPK is an important TNFalpha signaling target and is a contributing factor to the suppression of fatty-acid oxidation and the development of lipid-induced insulin resistance in obesity.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Steinberg GR,Michell BJ,van Denderen BJ,Watt MJ,Carey AL,Fam BC,Andrikopoulos S,Proietto J,Görgün CZ,Carling D,Hotamisligil GS,Febbraio MA,Kay TW,Kemp BE

doi

10.1016/j.cmet.2006.11.005

subject

Has Abstract

pub_date

2006-12-01 00:00:00

pages

465-74

issue

6

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(06)00367-6

journal_volume

4

pub_type

杂志文章
  • The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification.

    abstract::The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate,...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.04.015

    authors: Gachon F,Olela FF,Schaad O,Descombes P,Schibler U

    更新日期:2006-07-01 00:00:00

  • Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin.

    abstract::Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.09.006

    authors: Gui DY,Sullivan LB,Luengo A,Hosios AM,Bush LN,Gitego N,Davidson SM,Freinkman E,Thomas CJ,Vander Heiden MG

    更新日期:2016-11-08 00:00:00

  • Women in Metabolism: The Next Generation.

    abstract::The "Rosies" of Cell Metabolism persist as a new generation enters the stage. With inspiration from this issue's cover art, we celebrate young and diverse scientists and the mentorship that has guided them throughout. Their stories come from different corners of the world but are tied together by a common thread of te...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.08.021

    authors:

    更新日期:2017-09-05 00:00:00

  • ACOT12-Dependent Alteration of Acetyl-CoA Drives Hepatocellular Carcinoma Metastasis by Epigenetic Induction of Epithelial-Mesenchymal Transition.

    abstract::Metabolic reprogramming plays an important role in supporting tumor growth. However, little is known about the metabolic alterations that promote cancer metastasis. In this study, we identify acyl-CoA thioesterase 12 (ACOT12) as a key player in hepatocellular carcinoma (HCC) metastasis. The expression of ACOT12 is sig...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.12.019

    authors: Lu M,Zhu WW,Wang X,Tang JJ,Zhang KL,Yu GY,Shao WQ,Lin ZF,Wang SH,Lu L,Zhou J,Wang LX,Jia HL,Dong QZ,Chen JH,Lu JQ,Qin LX

    更新日期:2019-04-02 00:00:00

  • NADH Ties One-Carbon Metabolism to Cellular Respiration.

    abstract::In this issue of Cell Metabolism, Yang et al., 2020 report that serine is a source of mitochondrial NADH derived from one-carbon metabolism. Serine becomes a major source of NADH when cellular respiration is inhibited, and the un-utilized, accumulated NADH inhibits the TCA cycle and slows proliferation. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.03.012

    authors: Maynard AG,Kanarek N

    更新日期:2020-04-07 00:00:00

  • High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction.

    abstract::Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrien...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.07.003

    authors: Chalkiadaki A,Guarente L

    更新日期:2012-08-08 00:00:00

  • A radical signal activates the epigenetic regulation of longevity.

    abstract::Hormesis is an adaptive stress response implicated in longevity regulation. Schroeder et al. (2013) have now connected stress, epigenetic changes, and aging in yeast by showing that mitochondria-derived reactive oxygen species modulate the chromatin binding capacity of the histone demethylase Rph1p at subtelomeres, re...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.05.015

    authors: Mirisola MG,Longo VD

    更新日期:2013-06-04 00:00:00

  • Movin' on up: adipocytes become regulators of nutrient homeostasis.

    abstract::By locally infecting epididymal adipocytes of obese diabetic mice with the uncoupling protein-1 transgene, Yamada et al. (2006[this issue of Cell Metabolism]) unexpectedly induce leptin sensitivity with hypophagia and improvement in abnormal glucose and lipid abnormalities. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2006.02.005

    authors: Unger RH,Elmquist JK

    更新日期:2006-03-01 00:00:00

  • The emerging genetic architecture of type 2 diabetes.

    abstract::Type 2 diabetes is a genetically heterogeneous disease, with several relatively rare monogenic forms and a number of more common forms resulting from a complex interaction of genetic and environmental factors. Previous studies using a candidate gene approach, family linkage studies, and gene expression profiling uncov...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2008.08.006

    authors: Doria A,Patti ME,Kahn CR

    更新日期:2008-09-01 00:00:00

  • Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits.

    abstract::Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.02.012

    authors: Ducrocq F,Walle R,Contini A,Oummadi A,Caraballo B,van der Veldt S,Boyer ML,Aby F,Tolentino-Cortez T,Helbling JC,Martine L,Grégoire S,Cabaret S,Vancassel S,Layé S,Kang JX,Fioramonti X,Berdeaux O,Barreda-Gómez G,Masso

    更新日期:2020-04-07 00:00:00

  • A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior.

    abstract::Food intake and activity-induced thermogenesis are important components of energy balance regulation. The molecular mechanism underlying the coordination of food intake with locomotory behavior to maintain energy homeostasis is unclear. We report that the brain-specific homeobox transcription factor Bsx is required fo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.05.007

    authors: Sakkou M,Wiedmer P,Anlag K,Hamm A,Seuntjens E,Ettwiller L,Tschöp MH,Treier M

    更新日期:2007-06-01 00:00:00

  • Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress.

    abstract::The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicati...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.06.007

    authors: Chua KF,Mostoslavsky R,Lombard DB,Pang WW,Saito S,Franco S,Kaushal D,Cheng HL,Fischer MR,Stokes N,Murphy MM,Appella E,Alt FW

    更新日期:2005-07-01 00:00:00

  • Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice.

    abstract::XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream e...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.09.004

    authors: So JS,Hur KY,Tarrio M,Ruda V,Frank-Kamenetsky M,Fitzgerald K,Koteliansky V,Lichtman AH,Iwawaki T,Glimcher LH,Lee AH

    更新日期:2012-10-03 00:00:00

  • Hypothalamic tanycytes: gatekeepers to metabolic control.

    abstract::How circulating signals of hunger and satiety enter the brain to reach neurons that govern energy balance has long remained a matter of controversy and speculation. Balland et al. (2014) now elucidate molecular mechanisms by which a highly specialized hypothalamic glial cell regulates transport of leptin across the bl...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.01.008

    authors: Gao Y,Tschöp MH,Luquet S

    更新日期:2014-02-04 00:00:00

  • ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma.

    abstract::Tumors undergo nutrient stress and need to reprogram their metabolism to survive. The stroma may play a critical role in this process by providing nutrients to support the epithelial compartment of the tumor. Here we show that p62 deficiency in stromal fibroblasts promotes resistance to glutamine deprivation by the di...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.09.001

    authors: Linares JF,Cordes T,Duran A,Reina-Campos M,Valencia T,Ahn CS,Castilla EA,Moscat J,Metallo CM,Diaz-Meco MT

    更新日期:2017-12-05 00:00:00

  • DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery.

    abstract::Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (n = 45) with all stages of NAFLD and controls (n = 18) were analyzed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and me...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.07.004

    authors: Ahrens M,Ammerpohl O,von Schönfels W,Kolarova J,Bens S,Itzel T,Teufel A,Herrmann A,Brosch M,Hinrichsen H,Erhart W,Egberts J,Sipos B,Schreiber S,Häsler R,Stickel F,Becker T,Krawczak M,Röcken C,Siebert R,Schafmayer

    更新日期:2013-08-06 00:00:00

  • Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function.

    abstract::Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is e...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.11.021

    authors: Field CS,Baixauli F,Kyle RL,Puleston DJ,Cameron AM,Sanin DE,Hippen KL,Loschi M,Thangavelu G,Corrado M,Edwards-Hicks J,Grzes KM,Pearce EJ,Blazar BR,Pearce EL

    更新日期:2020-02-04 00:00:00

  • The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation.

    abstract::Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demon...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.08.009

    authors: el Azzouzi H,Leptidis S,Dirkx E,Hoeks J,van Bree B,Brand K,McClellan EA,Poels E,Sluimer JC,van den Hoogenhof MM,Armand AS,Yin X,Langley S,Bourajjaj M,Olieslagers S,Krishnan J,Vooijs M,Kurihara H,Stubbs A,Pinto YM,

    更新日期:2013-09-03 00:00:00

  • Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome.

    abstract::Although the concept of Syndrome X was introduced in the Banting Medal address of 1988 (Reaven, 1988), the notion that led to its genesis had started approximately 50 years earlier. In this short history, an attempt will be made to trace the two paths of scientific discovery that were formally merged in New Orleans in...

    journal_title:Cell metabolism

    pub_type: 历史文章,杂志文章

    doi:10.1016/j.cmet.2004.12.001

    authors: Reaven GM

    更新日期:2005-01-01 00:00:00

  • Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle.

    abstract::Fat and muscle lipolysis involves functional interactions of adipose triglyceride lipase (ATGL), α-β hydrolase domain-containing protein 5 (ABHD5), and tissue-specific perilipins 1 and 5 (PLIN1 and PLIN5). ABHD5 potently activates ATGL, but this lipase-promoting activity is suppressed when ABHD5 is bound to PLIN prote...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.08.023

    authors: Sanders MA,Madoux F,Mladenovic L,Zhang H,Ye X,Angrish M,Mottillo EP,Caruso JA,Halvorsen G,Roush WR,Chase P,Hodder P,Granneman JG

    更新日期:2015-11-03 00:00:00

  • Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export.

    abstract::CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-m...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.12.010

    authors: Wang K,Huang W,Chen R,Lin P,Zhang T,Ni YF,Li H,Wu J,Sun XX,Geng JJ,Zhu YM,Nan G,Zhang W,Chen X,Zhu P,Bian H,Chen ZN

    更新日期:2021-01-05 00:00:00

  • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.

    abstract::Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.04.003

    authors: Price NL,Gomes AP,Ling AJ,Duarte FV,Martin-Montalvo A,North BJ,Agarwal B,Ye L,Ramadori G,Teodoro JS,Hubbard BP,Varela AT,Davis JG,Varamini B,Hafner A,Moaddel R,Rolo AP,Coppari R,Palmeira CM,de Cabo R,Baur JA,Sin

    更新日期:2012-05-02 00:00:00

  • The liver--a potential new player in islet regeneration?

    abstract::Pancreatic islet beta cell mass expands in response to certain physiological conditions such as pregnancy and obesity, but the signaling pathways involved are not well understood. Possible insights come from a newly described regulatory circuit through which obesity-enhanced kinase signaling in the liver triggers expa...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.12.009

    authors: Moss LG,Newgard CB

    更新日期:2009-01-07 00:00:00

  • A cholesterol toggle switch.

    abstract::Cholesterol levels in mammalian cells are controlled by an intricate mechanism in which the transcription factor SREBP plays a key role. Work in this issue (Radhakrishnan et al., 2008) employing direct measurement of endoplasmic reticulum cholesterol levels offers insights into the "switch" that controls this system w...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2008.11.006

    authors: Hampton RY

    更新日期:2008-12-01 00:00:00

  • Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism.

    abstract::Circulating levels of insulin and glucagon reflect the nutritional state of animals and elicit regulatory responses in the liver that maintain glucose and lipid homeostasis. The transcription factor Foxa2 activates lipid metabolism and ketogenesis during fasting and is inhibited via insulin-PI3K-Akt signaling-mediated...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.01.014

    authors: von Meyenn F,Porstmann T,Gasser E,Selevsek N,Schmidt A,Aebersold R,Stoffel M

    更新日期:2013-03-05 00:00:00

  • The Pericyte of the Pancreatic Islet Regulates Capillary Diameter and Local Blood Flow.

    abstract::Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cove...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.02.016

    authors: Almaça J,Weitz J,Rodriguez-Diaz R,Pereira E,Caicedo A

    更新日期:2018-03-06 00:00:00

  • Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion.

    abstract::Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.06.003

    authors: Dyachok O,Idevall-Hagren O,Sågetorp J,Tian G,Wuttke A,Arrieumerlou C,Akusjärvi G,Gylfe E,Tengholm A

    更新日期:2008-07-01 00:00:00

  • BDNF (I)rising from exercise.

    abstract::Exercise produces many beneficial effects on brain health, in part by increasing hippocampal BDNF levels; however, the mechanism underlying BDNF gene regulation remains unknown. In this issue of Cell Metabolism, Wrann et al. (2013) show that exercise induces hippocampal Bdnf expression by stimulating expression of FND...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.10.008

    authors: Xu B

    更新日期:2013-11-05 00:00:00

  • Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans.

    abstract::The molecular transducers of benefits from different exercise modalities remain incompletely defined. Here we report that 12 weeks of high-intensity aerobic interval (HIIT), resistance (RT), and combined exercise training enhanced insulin sensitivity and lean mass, but only HIIT and combined training improved aerobic ...

    journal_title:Cell metabolism

    pub_type: 临床试验,杂志文章

    doi:10.1016/j.cmet.2017.02.009

    authors: Robinson MM,Dasari S,Konopka AR,Johnson ML,Manjunatha S,Esponda RR,Carter RE,Lanza IR,Nair KS

    更新日期:2017-03-07 00:00:00

  • When Cancer Cells Are Given Lemo[NH3]s, They Make Lemo[NH3]ade.

    abstract::In normal physiology, end-products of metabolism are excreted from the body. In tumors, these metabolic wastes accumulate due to deregulated metabolism and vascular insufficiency. Spinelli et al. (2017) show that breast cancer cells adapt to ammonia buildup by recycling it for amino acid synthesis, which can support c...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2017.11.008

    authors: Shan M,Lyssiotis CA

    更新日期:2017-12-05 00:00:00