Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling.

Abstract:

:In obesity, insulin resistance is linked to inflammation in several tissues. Although the gut is a very large lymphoid tissue, inflammation in the absorptive small intestine, the jejunum, where insulin regulates lipid and sugar absorption is unknown. We analyzed jejunal samples of 185 obese subjects stratified in three metabolic groups: without comorbidity, suffering from obesity-related comorbidity, and diabetic, versus 33 lean controls. Obesity increased both mucosa surface due to lower cell apoptosis and innate and adaptive immune cell populations. The preferential CD8αβ T cell location in epithelium over lamina propria appears a hallmark of obesity. Cytokine secretion by T cells from obese, but not lean, subjects blunted insulin signaling in enterocytes relevant to apical GLUT2 mislocation. Statistical links between T cell densities and BMI, NAFLD, or lipid metabolism suggest tissue crosstalk. Obesity triggers T-cell-mediated inflammation and enterocyte insulin resistance in the jejunum with potential broader systemic implications.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Monteiro-Sepulveda M,Touch S,Mendes-Sá C,André S,Poitou C,Allatif O,Cotillard A,Fohrer-Ting H,Hubert EL,Remark R,Genser L,Tordjman J,Garbin K,Osinski C,Sautès-Fridman C,Leturque A,Clément K,Brot-Laroche E

doi

10.1016/j.cmet.2015.05.020

subject

Has Abstract

pub_date

2015-07-07 00:00:00

pages

113-24

issue

1

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(15)00232-6

journal_volume

22

pub_type

杂志文章
  • Clking on PGC-1alpha to inhibit gluconeogenesis.

    abstract::The link between Akt activation and gluconeogenic repression remains unclear, despite many years of investigation and remarkable progress. Rodgers and colleagues now introduce us to the Clk2 kinase, an Akt substrate that can directly phosphorylate and inhibit PGC-1alpha, blunting hepatic glucose production. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.12.003

    authors: Cantó C,Auwerx J

    更新日期:2010-01-01 00:00:00

  • Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans.

    abstract::Obesity is a heritable disorder, with children of obese fathers at higher risk of developing obesity. Environmental factors epigenetically influence somatic tissues, but the contribution of these factors to the establishment of epigenetic patterns in human gametes is unknown. Here, we hypothesized that weight loss rem...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.11.004

    authors: Donkin I,Versteyhe S,Ingerslev LR,Qian K,Mechta M,Nordkap L,Mortensen B,Appel EV,Jørgensen N,Kristiansen VB,Hansen T,Workman CT,Zierath JR,Barrès R

    更新日期:2016-02-09 00:00:00

  • VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications.

    abstract::Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.03.004

    authors: Robciuc MR,Kivelä R,Williams IM,de Boer JF,van Dijk TH,Elamaa H,Tigistu-Sahle F,Molotkov D,Leppänen VM,Käkelä R,Eklund L,Wasserman DH,Groen AK,Alitalo K

    更新日期:2016-04-12 00:00:00

  • From the Transcriptome to Electrophysiology: Searching for the Underlying Cause of Diabetes.

    abstract::Cells within the islet of Langerhans are heterogeneous. Camunas-Soler et al. (2020) implement a patch-seq technique to collect both transcriptomic and electrophysiological data from the same cell. By doing so, they discover new genes that correlate with functional heterogeneity and find that shifts in these correlatio...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.04.012

    authors: Kravets V,Benninger RKP

    更新日期:2020-05-05 00:00:00

  • Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata.

    abstract::The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid poly...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.08.013

    authors: Wasserfall C,Nick HS,Campbell-Thompson M,Beachy D,Haataja L,Kusmartseva I,Posgai A,Beery M,Rhodes C,Bonifacio E,Arvan P,Atkinson M

    更新日期:2017-09-05 00:00:00

  • A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome.

    abstract::Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez et al. (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and human...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.10.012

    authors: Bokulich NA,Blaser MJ

    更新日期:2014-11-04 00:00:00

  • Break on Through: Golgi-Derived Vesicles Aid in Mitochondrial Fission.

    abstract::Mitochondrial fission is sustained through contact with several organelles, including the endoplasmic reticulum, lysosomes, and the actin cytoskeleton. Nagashima et al. (2020) now demonstrate that PI(4)P-containing Golgi-derived vesicles also modulate mitochondrial fission, driven by Arf1 and PI(4)KIIIβ activity, iden...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.05.010

    authors: Rasmussen ML,Robertson GL,Gama V

    更新日期:2020-06-02 00:00:00

  • Food for Thought: Revisiting the Complexity of Food Intake.

    abstract::The ability of hormones such as insulin, leptin, and cholecystokinin to alter food intake is influenced by intricate interactions between homeostatic and non-homeostatic factors. Consequently, when administered exogenously, the likelihood of these hormones influencing food intake is probabilistic, leading to difficult...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.08.017

    authors: Woods SC,Begg DP

    更新日期:2015-09-01 00:00:00

  • Adipose Dendritic Cells Come Out of Hiding.

    abstract::In this issue of Cell Metabolism, Macdougall et al. (2018) identify two subsets of conventional dendritic cells in visceral adipose tissue and demonstrate that these subsets engage distinct adipocyte-associated signaling pathways to drive their tolerogenic phenotypes in the lean state. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.02.014

    authors: LaMarche NM,Lynch L

    更新日期:2018-03-06 00:00:00

  • TOR regulation: sorting out the answers.

    abstract::Components involved in vesicle trafficking processes such as secretion, endocytosis, and autophagy are gaining recognition as important regulators and effectors of target of rapamycin (TOR) signaling. A recent report by now implicates Pmr1, a secretory pathway Ca(2+)/Mn(2+) ATPase located in the Golgi apparatus, as a ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.12.008

    authors: Neufeld TP

    更新日期:2007-01-01 00:00:00

  • Putting the brakes on dietary fat breakdown.

    abstract::Dietary lipid digestion is critical for body fat storage control, but little is known about the regulation of genes involved in fat breakdown and absorption in the gastrointestinal tract. A Drosophila study (Sieber and Thummel, 2009 [this issue of Cell Metabolism]) now demonstrates that the orphan nuclear receptor DHR...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.11.004

    authors: Kühnlein RP

    更新日期:2009-12-01 00:00:00

  • Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency.

    abstract::Most animal models of obesity and hyperinsulinemia are associated with increased vagal cholinergic activity. The M3 muscarinic acetylcholine receptor subtype is widely expressed in the brain and peripheral tissues and plays a key role in mediating the physiological effects of vagal activation. Here, we tested the hypo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.09.008

    authors: Gautam D,Gavrilova O,Jeon J,Pack S,Jou W,Cui Y,Li JH,Wess J

    更新日期:2006-11-01 00:00:00

  • Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation.

    abstract::Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of mic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.07.012

    authors: Koh A,Mannerås-Holm L,Yunn NO,Nilsson PM,Ryu SH,Molinaro A,Perkins R,Smith JG,Bäckhed F

    更新日期:2020-10-06 00:00:00

  • Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology.

    abstract::Humans exhibit remarkable interindividual variations in the concentration of small molecules found throughout the body, due in part to concurrent variations in each person's associated microbial communities. Recent studies have begun to uncover how microbes interface with their host during exposure to drugs, dietary c...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.07.002

    authors: Patterson AD,Turnbaugh PJ

    更新日期:2014-11-04 00:00:00

  • Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity.

    abstract::Macrophages infiltrate adipose tissue in obesity and are involved in the induction of inflammation, thereby contributing to the development of obesity-associated metabolic disorders. Here, we show that the macrophage-derived soluble protein AIM is endocytosed into adipocytes via CD36. Within adipocytes, AIM associates...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.04.013

    authors: Kurokawa J,Arai S,Nakashima K,Nagano H,Nishijima A,Miyata K,Ose R,Mori M,Kubota N,Kadowaki T,Oike Y,Koga H,Febbraio M,Iwanaga T,Miyazaki T

    更新日期:2010-06-09 00:00:00

  • Crosstalk between components of circadian and metabolic cycles in mammals.

    abstract::In mammals, most metabolic processes are influenced by biological clocks and feeding rhythms. The mechanisms that couple metabolism to circadian oscillators are just emerging. NAD-dependent enzymes (e.g., Sirtuins and poly[ADP-ribose] polymerases), redox- and/or temperature-dependent transcription factors (e.g., CLOCK...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2011.01.006

    authors: Asher G,Schibler U

    更新日期:2011-02-02 00:00:00

  • Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding.

    abstract::The essential role of the brain in maintaining energy homeostasis has motivated the drive to define the neural circuitry that integrates external and internal stimuli to enact appropriate and consequential metabolic and behavioral responses. The hypothalamus has received significant attention in this regard given its ...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2015.09.026

    authors: Waterson MJ,Horvath TL

    更新日期:2015-12-01 00:00:00

  • Bone remodeling, energy metabolism, and the molecular clock.

    abstract::The adult skeleton is constantly renewed through bone remodeling. Four recent papers (Baldock et al., 2007; Lee et al., 2007; Lundberg et al., 2007; Sato et al., 2007) provide new insights into central and peripheral control of this remodeling sequence. Two of the studies add to our knowledge of the complex hypothalam...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2007.12.004

    authors: Rosen CJ

    更新日期:2008-01-01 00:00:00

  • "AcCoA"lade for energy and life span.

    abstract::Faced with changing food availability, organisms adapt metabolism to survive. In a recent issue of Cell, Lin et al. (2009) described the acetylation of an extranuclear enzyme being regulated by acetyl-CoA. This finding connects nutrient availability, energy status, and survival. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.03.009

    authors: de Cabo R,Navas P

    更新日期:2009-04-01 00:00:00

  • Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress.

    abstract::The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicati...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.06.007

    authors: Chua KF,Mostoslavsky R,Lombard DB,Pang WW,Saito S,Franco S,Kaushal D,Cheng HL,Fischer MR,Stokes N,Murphy MM,Appella E,Alt FW

    更新日期:2005-07-01 00:00:00

  • Metabolic Effects of Dietary Nitrate in Health and Disease.

    abstract::Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), origi...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2018.06.007

    authors: Lundberg JO,Carlström M,Weitzberg E

    更新日期:2018-07-03 00:00:00

  • Pro- versus Anti-inflammatory Actions of HDLs in Innate Immunity.

    abstract::High-density lipoproteins (HDLs) can inhibit inflammatory cytokine expression on innate immune cells, but sometimes they promote cytokine production as suggested in a recent article in Cell Metabolism by van der Vorst et al. (2017). Kopecky et al. point out that the origin, handling, and storage conditions of HDL prep...

    journal_title:Cell metabolism

    pub_type: 信件

    doi:10.1016/j.cmet.2017.04.007

    authors: Kopecky C,Michlits G,Säemann MD,Weichhart T

    更新日期:2017-07-05 00:00:00

  • The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism.

    abstract::Factor inhibiting HIF-1alpha (FIH) is an asparaginyl hydroxylase. Hydroxylation of HIF-alpha proteins by FIH blocks association of HIFs with the transcriptional coactivators CBP/p300, thus inhibiting transcriptional activation. We have created mice with a null mutation in the FIH gene and found that it has little or n...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.03.001

    authors: Zhang N,Fu Z,Linke S,Chicher J,Gorman JJ,Visk D,Haddad GG,Poellinger L,Peet DJ,Powell F,Johnson RS

    更新日期:2010-05-05 00:00:00

  • Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle.

    abstract::Fat and muscle lipolysis involves functional interactions of adipose triglyceride lipase (ATGL), α-β hydrolase domain-containing protein 5 (ABHD5), and tissue-specific perilipins 1 and 5 (PLIN1 and PLIN5). ABHD5 potently activates ATGL, but this lipase-promoting activity is suppressed when ABHD5 is bound to PLIN prote...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.08.023

    authors: Sanders MA,Madoux F,Mladenovic L,Zhang H,Ye X,Angrish M,Mottillo EP,Caruso JA,Halvorsen G,Roush WR,Chase P,Hodder P,Granneman JG

    更新日期:2015-11-03 00:00:00

  • TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development.

    abstract::TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) an...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.08.012

    authors: Georgiev P,Okkenhaug H,Drews A,Wright D,Lambert S,Flick M,Carta V,Martel C,Oberwinkler J,Raghu P

    更新日期:2010-10-06 00:00:00

  • Mealtime Is NONO Speckled: Timing Hepatic Adaptation to Food.

    abstract::You are what you eat; but when you eat also seems to be important for a healthy metabolism. In this issue of Cell Metabolism, Benegiamo et al. (2018) uncover a mechanism by which the RNA-binding protein NONO promotes the time-of-day-dependent expression of key metabolic genes at a post-transcriptional level in respons...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.01.009

    authors: Torres M,Kramer A

    更新日期:2018-02-06 00:00:00

  • Enriching the Circadian Proteome.

    abstract::Circadian clocks regulate most aspects of physiology and metabolism. Genome-wide approaches have uncovered widespread circadian rhythms in the transcriptome, cistrome, and epigenome of mice, and now two proteomics studies in this issue (Robles et al., 2016; Wang et al., 2016) reveal extensive circadian regulation of t...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2016.12.014

    authors: Takahashi JS

    更新日期:2017-01-10 00:00:00

  • The Pentose Phosphate Pathway Regulates the Circadian Clock.

    abstract::The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.07.024

    authors: Rey G,Valekunja UK,Feeney KA,Wulund L,Milev NB,Stangherlin A,Ansel-Bollepalli L,Velagapudi V,O'Neill JS,Reddy AB

    更新日期:2016-09-13 00:00:00

  • Mitohormesis.

    abstract::For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been largely supplanted by the concept that mitochondria are fully integrated into the cell and that mitochondrial stresses rapidly activate cytosolic signaling pathways that ultimately alter nuc...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2014.01.011

    authors: Yun J,Finkel T

    更新日期:2014-05-06 00:00:00

  • Molecular mechanisms associated with leptin resistance: n-3 polyunsaturated fatty acids induce alterations in the tight junction of the brain.

    abstract::High-fat diets cause peripheral leptin resistance, and dietary lipid composition affects sensitivity to leptin. We examined the role of n-3 polyunsaturated fatty acid (PUFA) in peripheral leptin resistance. Dietary PUFAs (0.4% wt/wt) caused insensitivity to peripherally but not intracerebroventricularly administered l...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.04.004

    authors: Oh-I S,Shimizu H,Sato T,Uehara Y,Okada S,Mori M

    更新日期:2005-05-01 00:00:00