Sodium Intake Regulates Glucose Homeostasis through the PPARδ/Adiponectin-Mediated SGLT2 Pathway.

Abstract:

:High sodium intake is a major risk factor for developing hypertension in diabetes. Promotion of sodium excretion reduces cardiometabolic lesions in diabetes. However, the interaction between sodium intake and glucose homeostasis remains elusive. Here, we report that high sodium intake remarkably increased natriuresis in wild-type mice, but this effect was blunted in adipose-specific PPARδ knockout mice and diabetic mice. PPARδ activation in perirenal fat by agonist or high sodium intake inhibited renal sodium-glucose cotransporter 2 (SGLT2) function, which is mediated by increased production of adipose adiponectin. In addition, high salt intake-induced natriuresis was impaired in diabetic states because of renal SGLT2 dysfunction. Type 2 diabetic patients with uncontrolled hyperglycemia had less natriuresis that was correlated to their plasma adiponectin levels. Our findings provide insights into the distinctive role of the PPARδ/adiponectin/SGLT2 pathway in the regulation of sodium and glucose homeostasis.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Zhao Y,Gao P,Sun F,Li Q,Chen J,Yu H,Li L,Wei X,He H,Lu Z,Wei X,Wang B,Cui Y,Xiong S,Shang Q,Xu A,Huang Y,Liu D,Zhu Z

doi

10.1016/j.cmet.2016.02.019

subject

Has Abstract

pub_date

2016-04-12 00:00:00

pages

699-711

issue

4

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(16)30068-7

journal_volume

23

pub_type

杂志文章
  • Fasting the Microbiota to Improve Metabolism?

    abstract::While intermittent or periodic fasting provides a variety of favorable health benefits, the molecular mediators of these effects are poorly understood. In this issue of Cell Metabolism, Li and colleagues (2017) highlight the role of gut microbiota in mediating benefits of intermittent fasting through activation of adi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.09.013

    authors: Haas JT,Staels B

    更新日期:2017-10-03 00:00:00

  • Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency.

    abstract::Mitochondrial fatty acid oxidation provides an important energy source for cellular metabolism, and decreased mitochondrial fatty acid oxidation has been implicated in the pathogenesis of type 2 diabetes. Paradoxically, mice with an inherited deficiency of the mitochondrial fatty acid oxidation enzyme, very long-chain...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.03.012

    authors: Zhang D,Christianson J,Liu ZX,Tian L,Choi CS,Neschen S,Dong J,Wood PA,Shulman GI

    更新日期:2010-05-05 00:00:00

  • Metabolic Effects of Dietary Nitrate in Health and Disease.

    abstract::Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), origi...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2018.06.007

    authors: Lundberg JO,Carlström M,Weitzberg E

    更新日期:2018-07-03 00:00:00

  • Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation.

    abstract::Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of mic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.07.012

    authors: Koh A,Mannerås-Holm L,Yunn NO,Nilsson PM,Ryu SH,Molinaro A,Perkins R,Smith JG,Bäckhed F

    更新日期:2020-10-06 00:00:00

  • Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    abstract::Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram c...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.03.009

    authors: Thai M,Graham NA,Braas D,Nehil M,Komisopoulou E,Kurdistani SK,McCormick F,Graeber TG,Christofk HR

    更新日期:2014-04-01 00:00:00

  • Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin.

    abstract::Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.09.006

    authors: Gui DY,Sullivan LB,Luengo A,Hosios AM,Bush LN,Gitego N,Davidson SM,Freinkman E,Thomas CJ,Vander Heiden MG

    更新日期:2016-11-08 00:00:00

  • Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin.

    abstract::Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.03.006

    authors: López M,Lage R,Saha AK,Pérez-Tilve D,Vázquez MJ,Varela L,Sangiao-Alvarellos S,Tovar S,Raghay K,Rodríguez-Cuenca S,Deoliveira RM,Castañeda T,Datta R,Dong JZ,Culler M,Sleeman MW,Alvarez CV,Gallego R,Lelliott CJ,Carlin

    更新日期:2008-05-01 00:00:00

  • The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.

    abstract::Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are major phospholipids in mammalian membranes. In liver, PC is synthesized via the choline pathway or by methylation of PE via phosphatidylethanolamine N-methyltransferase (PEMT). Pemt(-/-) mice fed a choline-deficient (CD) diet develop rapid steatohepatitis ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.03.007

    authors: Li Z,Agellon LB,Allen TM,Umeda M,Jewell L,Mason A,Vance DE

    更新日期:2006-05-01 00:00:00

  • Another Shp on the horizon for bile acids.

    abstract::Bile acid metabolism is tightly controlled due to the toxic effects of bile acid overload. In this issue, research from the Feng lab reports Shp2 as a novel integrator of hepatic bile acid and FGF15/FGF19 signaling, adding another layer of complexity to the control of bile acid biosynthesis. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2014.07.019

    authors: Perino A,Schoonjans K

    更新日期:2014-08-05 00:00:00

  • AgRP and POMC neurons are hypophysiotropic and coordinately regulate multiple endocrine axes in a larval teleost.

    abstract::Plasticity in growth and reproductive behavior is found in many vertebrate species, but is common in male teleost fish. Typically, "bourgeois" males are considerably larger and defend breeding territories while "parasitic" variants are small and use opportunistic breeding strategies. The P locus mediates this phenotyp...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.12.014

    authors: Zhang C,Forlano PM,Cone RD

    更新日期:2012-02-08 00:00:00

  • Palatability Can Drive Feeding Independent of AgRP Neurons.

    abstract::Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.07.011

    authors: Denis RG,Joly-Amado A,Webber E,Langlet F,Schaeffer M,Padilla SL,Cansell C,Dehouck B,Castel J,Delbès AS,Martinez S,Lacombe A,Rouch C,Kassis N,Fehrentz JA,Martinez J,Verdié P,Hnasko TS,Palmiter RD,Krashes MJ,Güler A

    更新日期:2015-10-06 00:00:00

  • Inhibition of PKCepsilon improves glucose-stimulated insulin secretion and reduces insulin clearance.

    abstract::In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dys...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.08.012

    authors: Schmitz-Peiffer C,Laybutt DR,Burchfield JG,Gurisik E,Narasimhan S,Mitchell CJ,Pedersen DJ,Braun U,Cooney GJ,Leitges M,Biden TJ

    更新日期:2007-10-01 00:00:00

  • Movin' on up: adipocytes become regulators of nutrient homeostasis.

    abstract::By locally infecting epididymal adipocytes of obese diabetic mice with the uncoupling protein-1 transgene, Yamada et al. (2006[this issue of Cell Metabolism]) unexpectedly induce leptin sensitivity with hypophagia and improvement in abnormal glucose and lipid abnormalities. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2006.02.005

    authors: Unger RH,Elmquist JK

    更新日期:2006-03-01 00:00:00

  • What's the Mtrr with your grandparents?

    abstract::Reduced folate levels can cause developmental defects and megaloblastic anemia. Padmanabhan et al. (2013) show that mutation in mice of a folate metabolism gene, Mtrr, which encodes for methionine synthase reductase, causes developmental defects not only in the mutant progeny, but also in genetically wild-type descend...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.09.016

    authors: Greer EL,Shi Y

    更新日期:2013-10-01 00:00:00

  • Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells.

    abstract::Zika virus is a pathogen that poses serious consequences, including congenital microcephaly. Although many viruses reprogram host cell metabolism, whether Zika virus alters cellular metabolism and the functional consequences of Zika-induced metabolic changes remain unknown. Here, we show that Zika virus infection diff...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.01.024

    authors: Thaker SK,Chapa T,Garcia G Jr,Gong D,Schmid EW,Arumugaswami V,Sun R,Christofk HR

    更新日期:2019-05-07 00:00:00

  • Feeding mistiming decreases reproductive fitness in flies.

    abstract::The diurnally active fruit flies prefer a major meal in the morning. Feeding the flies in the evening uncouples their metabolic cycle from circadian activity rhythms. A paper by Xu et al. in this issue of Cell Metabolism found that such uncoupled rhythms reduce egg laying. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.05.003

    authors: Gill S,Panda S

    更新日期:2011-06-08 00:00:00

  • Physiological and Molecular Dissection of Daily Variance in Exercise Capacity.

    abstract::Physical performance relies on the concerted action of myriad responses, many of which are under circadian clock control. Little is known, however, regarding the time-dependent effect on exercise performance at the molecular level. We found that both mice and humans exhibit daytime variance in exercise capacity betwee...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.03.012

    authors: Ezagouri S,Zwighaft Z,Sobel J,Baillieul S,Doutreleau S,Ladeuix B,Golik M,Verges S,Asher G

    更新日期:2019-07-02 00:00:00

  • Inactivation of the Glucose-Dependent Insulinotropic Polypeptide Receptor Improves Outcomes following Experimental Myocardial Infarction.

    abstract::Incretin hormones exert pleiotropic metabolic actions beyond the pancreas. Although the heart expresses both incretin receptors, the cardiac biology of GIP receptor (GIPR) action remains incompletely understood. Here we show that GIPR agonism did not impair the response to cardiac ischemia. In contrast, genetic elimin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.11.003

    authors: Ussher JR,Campbell JE,Mulvihill EE,Baggio LL,Bates HE,McLean BA,Gopal K,Capozzi M,Yusta B,Cao X,Ali S,Kim M,Kabir MG,Seino Y,Suzuki J,Drucker DJ

    更新日期:2018-02-06 00:00:00

  • Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling.

    abstract::Elevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation o...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2006.11.005

    authors: Steinberg GR,Michell BJ,van Denderen BJ,Watt MJ,Carey AL,Fam BC,Andrikopoulos S,Proietto J,Görgün CZ,Carling D,Hotamisligil GS,Febbraio MA,Kay TW,Kemp BE

    更新日期:2006-12-01 00:00:00

  • Hyperpolarized MRI of Human Prostate Cancer Reveals Increased Lactate with Tumor Grade Driven by Monocarboxylate Transporter 1.

    abstract::Metabolic imaging using hyperpolarized magnetic resonance can increase the sensitivity of MRI, though its ability to inform on relevant changes to biochemistry in humans remains unclear. In this work, we image pyruvate metabolism in patients, assessing the reproducibility of delivery and conversion in the setting of p...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2019.08.024

    authors: Granlund KL,Tee SS,Vargas HA,Lyashchenko SK,Reznik E,Fine S,Laudone V,Eastham JA,Touijer KA,Reuter VE,Gonen M,Sosa RE,Nicholson D,Guo YW,Chen AP,Tropp J,Robb F,Hricak H,Keshari KR

    更新日期:2020-01-07 00:00:00

  • Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis.

    abstract::Heme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unkn...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.06.012

    authors: Nilsson R,Schultz IJ,Pierce EL,Soltis KA,Naranuntarat A,Ward DM,Baughman JM,Paradkar PN,Kingsley PD,Culotta VC,Kaplan J,Palis J,Paw BH,Mootha VK

    更新日期:2009-08-01 00:00:00

  • Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.

    abstract::Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-re...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.12.009

    authors: Le A,Lane AN,Hamaker M,Bose S,Gouw A,Barbi J,Tsukamoto T,Rojas CJ,Slusher BS,Zhang H,Zimmerman LJ,Liebler DC,Slebos RJ,Lorkiewicz PK,Higashi RM,Fan TW,Dang CV

    更新日期:2012-01-04 00:00:00

  • Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved β Cell Function.

    abstract::Aging is driven by changes of the epigenetic state that are only partially understood. We performed a comprehensive epigenomic analysis of the pancreatic β cell, key player in glucose homeostasis, in adolescent and very old mice. We observe a global methylation drift resulting in an overall more leveled methylome in o...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.07.025

    authors: Avrahami D,Li C,Zhang J,Schug J,Avrahami R,Rao S,Stadler MB,Burger L,Schübeler D,Glaser B,Kaestner KH

    更新日期:2015-10-06 00:00:00

  • Molecular mechanisms associated with leptin resistance: n-3 polyunsaturated fatty acids induce alterations in the tight junction of the brain.

    abstract::High-fat diets cause peripheral leptin resistance, and dietary lipid composition affects sensitivity to leptin. We examined the role of n-3 polyunsaturated fatty acid (PUFA) in peripheral leptin resistance. Dietary PUFAs (0.4% wt/wt) caused insensitivity to peripherally but not intracerebroventricularly administered l...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2005.04.004

    authors: Oh-I S,Shimizu H,Sato T,Uehara Y,Okada S,Mori M

    更新日期:2005-05-01 00:00:00

  • VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications.

    abstract::Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.03.004

    authors: Robciuc MR,Kivelä R,Williams IM,de Boer JF,van Dijk TH,Elamaa H,Tigistu-Sahle F,Molotkov D,Leppänen VM,Käkelä R,Eklund L,Wasserman DH,Groen AK,Alitalo K

    更新日期:2016-04-12 00:00:00

  • Putting the brakes on dietary fat breakdown.

    abstract::Dietary lipid digestion is critical for body fat storage control, but little is known about the regulation of genes involved in fat breakdown and absorption in the gastrointestinal tract. A Drosophila study (Sieber and Thummel, 2009 [this issue of Cell Metabolism]) now demonstrates that the orphan nuclear receptor DHR...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2009.11.004

    authors: Kühnlein RP

    更新日期:2009-12-01 00:00:00

  • TRPM channels mediate zinc homeostasis and cellular growth during Drosophila larval development.

    abstract::TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) an...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.08.012

    authors: Georgiev P,Okkenhaug H,Drews A,Wright D,Lambert S,Flick M,Carta V,Martel C,Oberwinkler J,Raghu P

    更新日期:2010-10-06 00:00:00

  • Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging.

    abstract::Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and deplet...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.05.014

    authors: Andersson DC,Betzenhauser MJ,Reiken S,Meli AC,Umanskaya A,Xie W,Shiomi T,Zalk R,Lacampagne A,Marks AR

    更新日期:2011-08-03 00:00:00

  • Wip1-dependent regulation of autophagy, obesity, and atherosclerosis.

    abstract::Obesity and atherosclerosis-related diseases account for over one-third of deaths in the western world. Controlling these conditions remains a major challenge due to an incomplete understanding of the molecular pathways involved. Here, we show that Wip1 phosphatase, a known negative regulator of Atm-dependent signalin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.06.003

    authors: Le Guezennec X,Brichkina A,Huang YF,Kostromina E,Han W,Bulavin DV

    更新日期:2012-07-03 00:00:00

  • A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior.

    abstract::Food intake and activity-induced thermogenesis are important components of energy balance regulation. The molecular mechanism underlying the coordination of food intake with locomotory behavior to maintain energy homeostasis is unclear. We report that the brain-specific homeobox transcription factor Bsx is required fo...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.05.007

    authors: Sakkou M,Wiedmer P,Anlag K,Hamm A,Seuntjens E,Ettwiller L,Tschöp MH,Treier M

    更新日期:2007-06-01 00:00:00