DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

Abstract:

:Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity.

journal_name

Cell Metab

journal_title

Cell metabolism

authors

Park SJ,Gavrilova O,Brown AL,Soto JE,Bremner S,Kim J,Xu X,Yang S,Um JH,Koch LG,Britton SL,Lieber RL,Philp A,Baar K,Kohama SG,Abel ED,Kim MK,Chung JH

doi

10.1016/j.cmet.2017.04.008

subject

Has Abstract

pub_date

2017-05-02 00:00:00

pages

1135-1146.e7

issue

5

eissn

1550-4131

issn

1932-7420

pii

S1550-4131(17)30213-9

journal_volume

25

pub_type

杂志文章
  • A macrophage sterol-responsive network linked to atherogenesis.

    abstract::Cholesteryl ester accumulation by macrophages is a critical early event in atherogenesis. To test the hypothesis that sterol loading promotes foam cell formation and vascular disease by perturbing a network of interacting proteins, we used a global approach to identify proteins that are differentially expressed when m...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2010.01.003

    authors: Becker L,Gharib SA,Irwin AD,Wijsman E,Vaisar T,Oram JF,Heinecke JW

    更新日期:2010-02-03 00:00:00

  • "AcCoA"lade for energy and life span.

    abstract::Faced with changing food availability, organisms adapt metabolism to survive. In a recent issue of Cell, Lin et al. (2009) described the acetylation of an extranuclear enzyme being regulated by acetyl-CoA. This finding connects nutrient availability, energy status, and survival. ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2009.03.009

    authors: de Cabo R,Navas P

    更新日期:2009-04-01 00:00:00

  • Fatty Acid Desaturation Gets a NAD+ Reputation.

    abstract::delta-5 desaturase and delta-6 desaturase are enzymes known to be involved in the synthesis of highly unsaturated fatty acids. In this issue, Kim et al. (2019) show that production of NAD+ by this desaturase reaction is an adaptive response to NAD+ depletion that may regulate cellular REDOX status. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2019.03.007

    authors: Lutkewitte AJ,Burgess SC,Finck BN

    更新日期:2019-04-02 00:00:00

  • Increased internal and external bacterial load during Drosophila aging without life-span trade-off.

    abstract::The role of microbial load during aging of the adult fruit fly Drosophila melanogaster is incompletely understood. Here we show dramatic increases in aerobic and anaerobic bacterial load during aging, both inside the body and on the surface. Scanning electron microscopy and cell staining analyses of the surface of age...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2007.06.006

    authors: Ren C,Webster P,Finkel SE,Tower J

    更新日期:2007-08-01 00:00:00

  • ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma.

    abstract::Tumors undergo nutrient stress and need to reprogram their metabolism to survive. The stroma may play a critical role in this process by providing nutrients to support the epithelial compartment of the tumor. Here we show that p62 deficiency in stromal fibroblasts promotes resistance to glutamine deprivation by the di...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.09.001

    authors: Linares JF,Cordes T,Duran A,Reina-Campos M,Valencia T,Ahn CS,Castilla EA,Moscat J,Metallo CM,Diaz-Meco MT

    更新日期:2017-12-05 00:00:00

  • Ancillary Activity: Beyond Core Metabolism in Immune Cells.

    abstract::Immune cell function and fate are intimately linked to engagement of metabolic pathways. The contribution of core metabolic pathways to immune cell bioenergetics has been vigorously investigated in recent years. However, precisely how other peripheral metabolic pathways support immune cells beyond energy generation is...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2017.06.019

    authors: Puleston DJ,Villa M,Pearce EL

    更新日期:2017-07-05 00:00:00

  • Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting.

    abstract::The delivery of blood-borne molecules conveying metabolic information to neural networks that regulate energy homeostasis is restricted by brain barriers. The fenestrated endothelium of median eminence microvessels and tight junctions between tanycytes together compose one of these. Here, we show that the decrease in ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2013.03.004

    authors: Langlet F,Levin BE,Luquet S,Mazzone M,Messina A,Dunn-Meynell AA,Balland E,Lacombe A,Mazur D,Carmeliet P,Bouret SG,Prevot V,Dehouck B

    更新日期:2013-04-02 00:00:00

  • Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans.

    abstract::Obesity is a heritable disorder, with children of obese fathers at higher risk of developing obesity. Environmental factors epigenetically influence somatic tissues, but the contribution of these factors to the establishment of epigenetic patterns in human gametes is unknown. Here, we hypothesized that weight loss rem...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.11.004

    authors: Donkin I,Versteyhe S,Ingerslev LR,Qian K,Mechta M,Nordkap L,Mortensen B,Appel EV,Jørgensen N,Kristiansen VB,Hansen T,Workman CT,Zierath JR,Barrès R

    更新日期:2016-02-09 00:00:00

  • Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety.

    abstract::Despite the prevalence of obesity and its related diseases, the signaling pathways for appetite control and satiety are not clearly understood. Here we report C. elegans quiescence behavior, a cessation of food intake and movement that is possibly a result of satiety. C. elegans quiescence shares several characteristi...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2008.01.005

    authors: You YJ,Kim J,Raizen DM,Avery L

    更新日期:2008-03-01 00:00:00

  • Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology.

    abstract::Humans exhibit remarkable interindividual variations in the concentration of small molecules found throughout the body, due in part to concurrent variations in each person's associated microbial communities. Recent studies have begun to uncover how microbes interface with their host during exposure to drugs, dietary c...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.07.002

    authors: Patterson AD,Turnbaugh PJ

    更新日期:2014-11-04 00:00:00

  • AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control.

    abstract::The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, whil...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2020.01.015

    authors: González A,Hall MN,Lin SC,Hardie DG

    更新日期:2020-03-03 00:00:00

  • Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.

    abstract::PTPMT1 was the first protein tyrosine phosphatase found localized to the mitochondria, but its biological function was unknown. Herein, we demonstrate that whole body deletion of Ptpmt1 in mice leads to embryonic lethality, suggesting an indispensable role for PTPMT1 during development. Ptpmt1 deficiency in mouse embr...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2011.04.007

    authors: Zhang J,Guan Z,Murphy AN,Wiley SE,Perkins GA,Worby CA,Engel JL,Heacock P,Nguyen OK,Wang JH,Raetz CR,Dowhan W,Dixon JE

    更新日期:2011-06-08 00:00:00

  • Glycogen synthase: an old enzyme with a new trick.

    abstract::Phosphorylation of glycogen has been known for decades; however, the basic metabolic pathways responsible for this modification are unknown. In this issue, Tagliabracci et al. (2011) report the enzyme responsible for incorporating phosphate and the chemical nature of the phosphate linkage, providing a framework for ex...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2011.02.006

    authors: Worby CA,Dixon JE

    更新日期:2011-03-02 00:00:00

  • Of Mice Not Men? Actions of Interleukin-6 on Glucose Tolerance.

    abstract::In mice, interleukin-6 (IL-6) improves glucose tolerance via stimulation of glucagon-like peptide 1 (GLP-1) secretion. In this issue of Cell Metabolism, Lang Lehrskov et al. (2018) demonstrate that IL-6 infusion has GLP-1-dependent and -independent actions with opposing effects on glucose tolerance, resulting in an ov...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2018.05.013

    authors: McGlone ER,Tan TM

    更新日期:2018-06-05 00:00:00

  • Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals.

    abstract::"Beige" adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervat...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.08.005

    authors: Zhu Y,Gao Y,Tao C,Shao M,Zhao S,Huang W,Yao T,Johnson JA,Liu T,Cypess AM,Gupta O,Holland WL,Gupta RK,Spray DC,Tanowitz HB,Cao L,Lynes MD,Tseng YH,Elmquist JK,Williams KW,Lin HV,Scherer PE

    更新日期:2016-09-13 00:00:00

  • HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling.

    abstract::Glucagon drives hepatic gluconeogenesis and maintains blood glucose levels during fasting. The mechanism that attenuates glucagon action following refeeding is not understood. The present study demonstrates an increase in perivenous liver hypoxia immediately after feeding, which stabilizes hypoxia-inducible factor 2α ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2016.01.004

    authors: Ramakrishnan SK,Zhang H,Takahashi S,Centofanti B,Periyasamy S,Weisz K,Chen Z,Uhler MD,Rui L,Gonzalez FJ,Shah YM

    更新日期:2016-03-08 00:00:00

  • Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis.

    abstract::Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. We have developed transgenic mice inducibly expressing acid ceramidase that display a reduction in ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts impr...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.06.007

    authors: Xia JY,Holland WL,Kusminski CM,Sun K,Sharma AX,Pearson MJ,Sifuentes AJ,McDonald JG,Gordillo R,Scherer PE

    更新日期:2015-08-04 00:00:00

  • In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding.

    abstract::Nutritional and pharmacological stimuli can dramatically alter the cellular phenotypes in white adipose tissue (WAT). Utilizing genetic lineage tracing techniques, we demonstrate that brown adipocytes (BA) that are induced by β3-adrenergic receptor activation in abdominal WAT arise from the proliferation and different...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.03.009

    authors: Lee YH,Petkova AP,Mottillo EP,Granneman JG

    更新日期:2012-04-04 00:00:00

  • Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy.

    abstract::Peroxisomes play a central role in lipid metabolism, and their function depends on molecular oxygen. Low oxygen tension or von Hippel-Lindau (Vhl) tumor suppressor loss is known to stabilize hypoxia-inducible factors alpha (Hif-1α and Hif-2α) to mediate adaptive responses, but it remains unknown if peroxisome homeosta...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2014.09.017

    authors: Walter KM,Schönenberger MJ,Trötzmüller M,Horn M,Elsässer HP,Moser AB,Lucas MS,Schwarz T,Gerber PA,Faust PL,Moch H,Köfeler HC,Krek W,Kovacs WJ

    更新日期:2014-11-04 00:00:00

  • ATP citrate lyase improves mitochondrial function in skeletal muscle.

    abstract::Mitochondrial dysfunction is associated with skeletal muscle pathology, including cachexia, sarcopenia, and the muscular dystrophies. ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes mitochondria-derived citrate into oxaloacetate and acetyl-CoA. Here we report that activation of ACL in skeletal muscle resu...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.05.006

    authors: Das S,Morvan F,Jourde B,Meier V,Kahle P,Brebbia P,Toussaint G,Glass DJ,Fornaro M

    更新日期:2015-06-02 00:00:00

  • Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders.

    abstract::The final steps in the production of adenosine triphosphate (ATP) in mitochondria are executed by a series of multisubunit complexes and electron carriers, which together constitute the oxidative phosphorylation (OXPHOS) system. OXPHOS is under dual genetic control, with communication between the nuclear and mitochond...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2005.12.001

    authors: Smeitink JA,Zeviani M,Turnbull DM,Jacobs HT

    更新日期:2006-01-01 00:00:00

  • Imaging obesity: fMRI, food reward, and feeding.

    abstract::Animal studies have revealed brain regions that control homeostatic feeding, but the rampant overeating contributing to the obesity epidemic suggests the participation of "nonhomeostatic" control centers. Recent papers by Batterham et al. (2007) and Farooqi et al. (2007) link peptide YY(3-36) and leptin to the activat...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2007.11.007

    authors: Grill HJ,Skibicka KP,Hayes MR

    更新日期:2007-12-01 00:00:00

  • Getting Warmer: Following One's Gut to Build Bone.

    abstract::In this issue of the Cell Metabolism, Chevalier et al. show that a warm environment produces changes in the composition of intestinal microbiota and that these changes can prevent bone loss due to hypogonadism. Dovetailing with prior studies on the ability of probiotics to reverse hypogonadism-induced osteopenia, the ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2020.09.010

    authors: Iqbal J,Yuen T,Zaidi M

    更新日期:2020-10-06 00:00:00

  • Mitohormesis.

    abstract::For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been largely supplanted by the concept that mitochondria are fully integrated into the cell and that mitochondrial stresses rapidly activate cytosolic signaling pathways that ultimately alter nuc...

    journal_title:Cell metabolism

    pub_type: 杂志文章,评审

    doi:10.1016/j.cmet.2014.01.011

    authors: Yun J,Finkel T

    更新日期:2014-05-06 00:00:00

  • How is the hungry brain like a sieve?

    abstract::Whether some hypothalamic neurons have direct access to circulating metabolic cues represents a crucial question that has been intensely debated. New findings reveal that fasting promotes "leakiness" of some hypothalamic blood vessels, increasing the access of circulating factors to certain hypothalamic neurons that c...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2013.03.007

    authors: Myers MG Jr

    更新日期:2013-04-02 00:00:00

  • The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity.

    abstract::Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abro...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2017.08.003

    authors: Huang Z,Zhong L,Lee JTH,Zhang J,Wu D,Geng L,Wang Y,Wong CM,Xu A

    更新日期:2017-09-05 00:00:00

  • BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response.

    abstract::Studying ciliopathies, like the Bardet-Biedl syndrome (BBS), allow the identification of signaling pathways potentially involved in common diseases, sharing phenotypic features like obesity or type 2 diabetes. Given the close association between obesity and insulin resistance, obese BBS patients would be expected to b...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2012.08.005

    authors: Marion V,Mockel A,De Melo C,Obringer C,Claussmann A,Simon A,Messaddeq N,Durand M,Dupuis L,Loeffler JP,King P,Mutter-Schmidt C,Petrovsky N,Stoetzel C,Dollfus H

    更新日期:2012-09-05 00:00:00

  • Ligand Activation of ERRα by Cholesterol Mediates Statin and Bisphosphonate Effects.

    abstract::Nuclear receptors (NRs) are key regulators of gene expression and physiology. Nearly half of all human NRs lack endogenous ligands including estrogen-related receptor α (ERRα). ERRα has important roles in cancer, metabolism, and skeletal homeostasis. Affinity chromatography of tissue lipidomes with the ERRα ligand-bin...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2015.12.010

    authors: Wei W,Schwaid AG,Wang X,Wang X,Chen S,Chu Q,Saghatelian A,Wan Y

    更新日期:2016-03-08 00:00:00

  • A Novel Protective Role for FXR against Inflammasome Activation and Endotoxemia.

    abstract::During conditions of impaired bile flow (cholestasis), increased serum bile acids (BAs) are prognostic markers of sepsis. In this issue, Hao et al. (2017) show that the BA receptor FXR binds NLRP3 inflammasome in macrophages and inhibits activation of inflammasome components, thus reducing endotoxemia in cholestasis. ...

    journal_title:Cell metabolism

    pub_type: 评论,杂志文章

    doi:10.1016/j.cmet.2017.03.014

    authors: Garcia-Irigoyen O,Moschetta A

    更新日期:2017-04-04 00:00:00

  • Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State.

    abstract::Understanding the neural framework behind appetite control is fundamental to developing effective therapies to combat the obesity epidemic. The paraventricular hypothalamus (PVH) is critical for appetite regulation, yet, the real-time, physiological response properties of PVH neurons to nutrients are unknown. Using a ...

    journal_title:Cell metabolism

    pub_type: 杂志文章

    doi:10.1016/j.cmet.2018.10.016

    authors: Li C,Navarrete J,Liang-Guallpa J,Lu C,Funderburk SC,Chang RB,Liberles SD,Olson DP,Krashes MJ

    更新日期:2019-03-05 00:00:00