Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.

Abstract:

:To analyze the biomechanical effect of syndesmotic screw through three and four cortices, a total of 12 finite element models simulating healthy ankles, tibiofibular syndesmosis injured ankles, and post-operative ankles by screw fixations through three or four cortices were built. A set of biomechanical data were obtained to find that screw fixation methods for inferior tibiofibular syndesmosis can help recover most of the biomechanical relations of the ankle especially the tricortical fixation, while the screw of quadricortical fixation bear more stress than the tricortical fixation. The modeling method for finite element models was also modified for saving more time and realizing personalized modeling for clinical application.

authors

Li H,Chen Y,Qiang M,Zhang K,Jiang Y,Zhang Y,Jia X

doi

10.1080/10255842.2018.1472770

subject

Has Abstract

pub_date

2018-04-01 00:00:00

pages

427-435

issue

5

eissn

1025-5842

issn

1476-8259

journal_volume

21

pub_type

杂志文章
  • Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.

    abstract::A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an or...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.737458

    authors: Wang X,Wang L,Zhou J,Hu Y

    更新日期:2014-08-01 00:00:00

  • Skeletonization of volumetric angiograms for display.

    abstract::The display of three-dimensional angiograms can benefit from the knowledge of quantitative shape features such as tangent and curvature of the centerline of vessels. These can be obtained from a curve-like skeleton representation. If connectivity and topology are preserved, and if geometrical constraints such as smoot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000003874

    authors: Yi D,Hayward V

    更新日期:2002-10-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • Virtual power based algorithm for decoupling large motions from infinitesimal strains: application to shoulder joint biomechanics.

    abstract::New trends of numerical models of human joints require more and more computation of both large amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve and very CPU time consuming. The goal of this study is to develop a new method to diminish the calculation time for t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000016843

    authors: Büchler P,Rakotomanana L,Farron A

    更新日期:2002-12-01 00:00:00

  • Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures.

    abstract::The aim of this study is to evaluate the fracture union or non-union for a specific patient that presented oblique fractures in tibia and fibula, using a mechanistic-based bone healing model. Normally, this kind of fractures can be treated through an intramedullary nail using two possible configurations that depends o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1125473

    authors: Alierta JA,Pérez MA,Seral B,García-Aznar JM

    更新日期:2016-09-01 00:00:00

  • Foot internal stress distribution during impact in barefoot running as function of the strike pattern.

    abstract::The aim of the present study is to examine the impact absorption mechanism of the foot for different strike patterns (rearfoot, midfoot and forefoot) using a continuum mechanics approach. A three-dimensional finite element model of the foot was employed to estimate the stress distribution in the foot at the moment of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1480760

    authors: Morales-Orcajo E,Becerro de Bengoa Vallejo R,Losa Iglesias M,Bayod J,Barbosa de Las Casas E

    更新日期:2018-05-01 00:00:00

  • A neurofuzzy inference system based on biomechanical features for the evaluation of the effects of physical training.

    abstract::The current study aimed to evaluate physical training effects. For this purpose, a classifier was implemented by taking into account biomechanical features selected from force-plate measurements and a neurofuzzy algorithm for data management and relevant decision-making. Measurements included two sets of sit-to-stand ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,随机对照试验

    doi:10.1080/10255840701550915

    authors: Vannozzi G,Pecoraro F,Caserotti P,Cappozzo A

    更新日期:2008-02-01 00:00:00

  • The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.

    abstract::The purpose of this simulation study was to analyze the effect of variation in Knee-Ankle-Foot-Orthosis stiffness on the joint power and the energy cost of walking. The effect of contractile tissue was simulated using linear elastic spring and viscous dampers in knee and ankle joints. Then, joint angles, ground reacti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1438417

    authors: Abtahi SMA,Jamshidi N,Ghaziasgar A

    更新日期:2018-02-01 00:00:00

  • Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem.

    abstract::Human brain tissue is complex and multi-component in nature. It consists of an anisotropic hyperelastic solid material composed of tissue cells and blood vessel walls. Brain tissue is permeated by two viscous pore liquids, the interstitial fluid and the blood. Both liquids are mobile within the tissue and exhibit a si...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.853754

    authors: Ehlers W,Wagner A

    更新日期:2015-01-01 00:00:00

  • Physiological complexity of gait is decreased in individuals with chronic stroke.

    abstract::Complexity represents the adaptability of the biological system, therefore the assessment of complexity during tasks such as walking may be particularly useful when attempting to better understand the recovery processes after stroke. The purpose of this study was to determine whether the complexity of lower extremity ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1578961

    authors: Dugan EL,Combs-Miller SA

    更新日期:2019-05-01 00:00:00

  • Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.

    abstract::An appropriate method of application of the hip-joint force and stress analysis of the pelvic bone, in particular the acetabulum, is necessary to investigate the changes in load transfer due to implantation and to calculate the reference stimulus for bone remodelling simulations. The purpose of the study is to develop...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.843674

    authors: Ghosh R,Pal B,Ghosh D,Gupta S

    更新日期:2015-01-01 00:00:00

  • A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    abstract::The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.803081

    authors: Andrade A,Costa M,Paolucci L,Braga A,Pires F,Ugrinowitsch H,Menzel HJ

    更新日期:2015-01-01 00:00:00

  • Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    abstract::Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1096348

    authors: Alkhamaali ZK,Crocombe AD,Solan MC,Cirovic S

    更新日期:2016-01-01 00:00:00

  • Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability.

    abstract::Polyurethane (PU) foam is a material often used in biomechanical experiments and demands for the definition of crushable foam plasticity (CFP) in numerical simulations of the primary stability and deformation of implants, to describe the crushing behaviour appropriately. Material data of PU foams with five different d...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1524884

    authors: Schulze C,Vogel D,Sander M,Bader R

    更新日期:2019-01-01 00:00:00

  • Muscle moment-arms: a key element in muscle-force estimation.

    abstract::A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependenc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.818666

    authors: Ingram D,Engelhardt C,Farron A,Terrier A,Müllhaupt P

    更新日期:2015-01-01 00:00:00

  • Solute transport in cartilage undergoing cyclic deformation.

    abstract::There are no blood vessels in cartilage to transport nutrients and growth factors to chondrocytes dispersed throughout the cartilage matrix. Insulin-like growth factor-I (IGF-I) is a large molecule with an important role in cartilage growth and metabolism, however, it first must reach the chondrocytes to exert its eff...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701309163

    authors: Gardiner B,Smith D,Pivonka P,Grodzinsky A,Frank E,Zhang L

    更新日期:2007-08-01 00:00:00

  • Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study.

    abstract::In order to improve the reliability of children's models, the aim of this study was to determine the subject-specific masses and 3D locations of the centres of mass (CoM) of body segments using biplanar X-rays. Previous methods, validated on upper leg segments, were applied to the whole body. Six children and six adul...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255841003717608

    authors: Sandoz B,Laporte S,Skalli W,Mitton D

    更新日期:2010-12-01 00:00:00

  • Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model.

    abstract::Cell migration relies on traction forces in order to propel a cell. Several computational models have been developed that help explain the trajectory that cells take during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatiotemporal dynamics of cell ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554412

    authors: Han SJ,Sniadecki NJ

    更新日期:2011-05-01 00:00:00

  • Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.

    abstract::Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Homogeneous, Newtonian blood flow is simulated under steady conditions for the range of Reynolds numbers 10 < or ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000009742

    authors: Finol EA,Amon CH

    更新日期:2002-08-01 00:00:00

  • Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    abstract::Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is high...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.628943

    authors: Karmakar C,Khandoker A,Begg R,Palaniswami M

    更新日期:2013-01-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    abstract::Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consist...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.887698

    authors: Caballero AD,Laín S

    更新日期:2015-08-01 00:00:00

  • In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices.

    abstract::When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the ski...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1655549

    authors: Barrios-Muriel J,Romero Sánchez F,Alonso Sánchez FJ,Rodríguez Salgado D

    更新日期:2019-11-01 00:00:00

  • Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion.

    abstract::The Montgomery T-tube is used as a combined tracheal stent and airway after laryngotracheoplasty, to keep the lumen open and prevent mucosal laceration from scarring. It is valuable in the management of upper and mid-tracheal lesions, while invaluable in long and multisegmental stenting lesions. Numerical simulations ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.930448

    authors: Trabelsi O,Malvè M,Mena Tobar A,Doblaré M

    更新日期:2015-01-01 00:00:00

  • Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    abstract::Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second prem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902788579

    authors: Khani MM,Tafazzoli-Shadpour M,Aghajani F,Naderi P

    更新日期:2009-10-01 00:00:00

  • Non-Newtonian flow-induced deformation from pressurized cavities in absorbing porous tissues.

    abstract::We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a ra...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1376323

    authors: Ahmed A,Siddique JI,Mahmood A

    更新日期:2017-10-01 00:00:00

  • Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty.

    abstract::The goal of this study was to define the effect on hip contact forces of including subject-specific moment generating capacity in the musculoskeletal model by scaling isometric muscle strength and by including geometrical information in control subjects, hip osteoarthritis and total hip arthroplasty patients. Scaling ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1181174

    authors: Wesseling M,De Groote F,Meyer C,Corten K,Simon JP,Desloovere K,Jonkers I

    更新日期:2016-11-01 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Fluid-solid interaction in arteries incorporating the autoregulation concept in boundary conditions.

    abstract::In pre-surgery decisions in hospital emergency cases, fast and reliable results of the solid and fluid mechanics problems are of great interest to clinicians. In the current investigation, an iterative process based on a pressure-type boundary condition is proposed in order to reduce the computational costs of blood f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1085026

    authors: Afkari D,Gabaldón F

    更新日期:2016-01-01 00:00:00

  • Assessment of mechanical integrity for drug-eluting renal stent with micro-sized drug reservoirs.

    abstract::The drug-eluting stent (DES) has become the gold standard worldwide for the treatment of cardiovascular diseases. In recent years, an innovative variation of the DES with micro-sized drug reservoirs has been introduced. It allows programmable drug delivery with both spatial and temporal control and has several potenti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.670851

    authors: Hsiao HM,Chiu YH

    更新日期:2013-01-01 00:00:00