A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

Abstract:

:The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.

authors

Andrade A,Costa M,Paolucci L,Braga A,Pires F,Ugrinowitsch H,Menzel HJ

doi

10.1080/10255842.2013.803081

subject

Has Abstract

pub_date

2015-01-01 00:00:00

pages

382-90

issue

4

eissn

1025-5842

issn

1476-8259

journal_volume

18

pub_type

杂志文章
  • Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart.

    abstract::Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1183122

    authors: Nikou A,Dorsey SM,McGarvey JR,Gorman JH 3rd,Burdick JA,Pilla JJ,Gorman RC,Wenk JF

    更新日期:2016-12-01 00:00:00

  • Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model.

    abstract::Cell migration relies on traction forces in order to propel a cell. Several computational models have been developed that help explain the trajectory that cells take during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatiotemporal dynamics of cell ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554412

    authors: Han SJ,Sniadecki NJ

    更新日期:2011-05-01 00:00:00

  • Physiological complexity of gait is decreased in individuals with chronic stroke.

    abstract::Complexity represents the adaptability of the biological system, therefore the assessment of complexity during tasks such as walking may be particularly useful when attempting to better understand the recovery processes after stroke. The purpose of this study was to determine whether the complexity of lower extremity ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1578961

    authors: Dugan EL,Combs-Miller SA

    更新日期:2019-05-01 00:00:00

  • Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    abstract::A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.903932

    authors: Gouinaud L,Katz I,Martin A,Hazebroucq J,Texereau J,Caillibotte G

    更新日期:2015-01-01 00:00:00

  • Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    abstract::Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second prem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902788579

    authors: Khani MM,Tafazzoli-Shadpour M,Aghajani F,Naderi P

    更新日期:2009-10-01 00:00:00

  • Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.

    abstract::Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared usi...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.574618

    authors: Callanan A,Morris LG,McGloughlin TM

    更新日期:2012-01-01 00:00:00

  • Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    abstract::Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-sli...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1055257

    authors: Ali N,Javid K,Sajid M,Anwar Bég O

    更新日期:2016-01-01 00:00:00

  • A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.

    abstract::Generation of finite element (FE) meshes of vertebrae from computed tomography (CT) scans is labour intensive due to their geometric complexity. As such, techniques that simplify creation of meshes of vertebrae are needed to make FE analysis feasible for large studies and clinical applications. Techniques to obtain a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902802883

    authors: Dai Y,Niebur GL

    更新日期:2009-10-01 00:00:00

  • A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter.

    abstract::This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903097871

    authors: Abolfathi N,Naik A,Sotudeh Chafi M,Karami G,Ziejewski M

    更新日期:2009-06-01 00:00:00

  • An assessment of swinger techniques for the playground swing oscillatory motion.

    abstract::Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger tech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.572280

    authors: Linge SO

    更新日期:2012-01-01 00:00:00

  • Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.

    abstract::To extend the use of computational techniques like finite element analysis to clinical settings, it would be beneficial to have the ability to generate a unique model for every subject quickly and efficiently. This work is an extension of two previously developed mapped meshing tools that utilised force and displaceme...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.629614

    authors: Kallemeyn NA,Natarajan A,Magnotta VA,Grosland NM

    更新日期:2013-01-01 00:00:00

  • A new musculoskeletal AnyBody™ detailed hand model.

    abstract::Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1851367

    authors: Engelhardt L,Melzner M,Havelkova L,Fiala P,Christen P,Dendorfer S,Simon U

    更新日期:2020-12-10 00:00:00

  • An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes.

    abstract::Electrocardiogram (ECG) signals are difficult to interpret, and clinicians must undertake a long training process to learn to diagnose diabetes from subtle abnormalities in these signals. To facilitate these diagnoses, we have developed a technique based on the heart rate variability signal obtained from ECG signals. ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.616945

    authors: Acharya UR,Faust O,Sree SV,Ghista DN,Dua S,Joseph P,Ahamed VI,Janarthanan N,Tamura T

    更新日期:2013-01-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • Image-guided surgery: from X-rays to virtual reality.

    abstract::Since the discovery of X-rays, medical imaging has played a major role in the guidance of surgical procedures. While medical imaging began with simple X-ray plates to indicate the presence of foreign objects within the human body, the advent of the computer has been a major factor in the recent development of this fie...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840008907997

    authors: Peters TM

    更新日期:2000-01-01 00:00:00

  • Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.

    abstract::Abnormal haemodynamic parameters are associated with atheroma plaque progression and instability in coronary arteries. Flow recirculation, shear stress and pressure gradient are understood to be important pathogenic mediators in coronary disease. The effect of freedom of coronary artery movement on these parameters is...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1215439

    authors: Javadzadegan A,Yong AS,Chang M,Ng MK,Behnia M,Kritharides L

    更新日期:2017-02-01 00:00:00

  • Interaction of microstructure and microcrack growth in cortical bone: a finite element study.

    abstract::Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behaviour in cortical bone. This study aims to develop a computational mechanics approach to evaluate microscale fracture mechanisms in bone. In this study, finite element models based o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.607444

    authors: Mischinski S,Ural A

    更新日期:2013-01-01 00:00:00

  • Development and validation of a finite element model of a small female pedestrian.

    abstract::Pedestrians are the most vulnerable road user and represent about 23% of the road traffic deaths in the world. A finite element (FE) model corresponding to a 5th percentile female pedestrian (F05-PS) was developed by morphing the Global Human Body Models Consortium (GHBMC) 50th percentile male pedestrian (M50-PS) mode...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1801652

    authors: Pak W,Meng Y,Schap J,Koya B,Gayzik FS,Untaroiu CD

    更新日期:2020-12-01 00:00:00

  • A computational study of the EN 1078 impact test for bicycle helmets using a realistic subject-specific finite element head model.

    abstract::In the present study, the free fall impact test in accordance with the EN1078 standard for certification of bicycle helmets is replicated using numerical simulations. The impact scenario is simulated using an experimentally validated, patient-specific head model equipped with and without a bicycle helmet. Head acceler...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1511775

    authors: Sandberg M,Tse KM,Tan LB,Lee HP

    更新日期:2018-09-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • Muscle parameters estimation based on biplanar radiography.

    abstract::The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Res...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1171855

    authors: Dubois G,Rouch P,Bonneau D,Gennisson JL,Skalli W

    更新日期:2016-11-01 00:00:00

  • Propagation of registration errors into the change in maximum total point motion for determining stability of tibial baseplates.

    abstract::The change in maximum total point motion (ΔMTPM) is used to predict long-term risk of tibial baseplate loosening, however, effects of registration error on ΔMTPM have not been quantified for marker-based and model-based radiostereometric analysis (RSA). Registration errors for marker-based and model-based RSA were app...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1865324

    authors: Niesen AE,Hull ML

    更新日期:2021-01-05 00:00:00

  • Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft.

    abstract::Local oxygen lack in arterial walls (hypoxia) plays a very important role in the initiation, progression and development of intimal hyperplasia (IH) and thrombosis. Aiming to find out whether a helical-type artery bypass graft (ABG) is hypoxia beneficial, a numerical study was carried out to compare oxygen transport b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.702764

    authors: Zheng T,Wen J,Jiang W,Deng X,Fan Y

    更新日期:2014-04-01 00:00:00

  • Artefact-reduced kinematics measurement using a geometric finger model with mixture-prior particle filtering.

    abstract::It is challenging to measure the finger's kinematics of underlying bones in vivo. This paper presents a new method of finger kinematics measurement, using a geometric finger model and several markers deliberately stuck on skin surface. Using a multiple-view camera system, the optimal motion parameters of finger model ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.643467

    authors: Chang CW,Kuo LC,Jou IM,Su FC,Sun YN

    更新日期:2013-01-01 00:00:00

  • Effects of medial collateral ligament release, limb correction, and soft tissue laxity on knee joint contact force distribution after medial opening wedge high tibial osteotomy: a computational study.

    abstract::In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated stand...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1549658

    authors: Purevsuren T,Khuyagbaatar B,Kim K,Kim YH

    更新日期:2019-02-01 00:00:00

  • The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    abstract::Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens fr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1041022

    authors: Baumann AP,Shi X,Roeder RK,Niebur GL

    更新日期:2016-01-01 00:00:00

  • A reliability measure of protein-protein interactions and a reliability measure-based search engine.

    abstract::Many methods developed for estimating the reliability of protein-protein interactions are based on the topology of protein-protein interaction networks. This paper describes a new reliability measure for protein-protein interactions, which does not rely on the topology of protein interaction networks, but expresses bi...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.494039

    authors: Park B,Han K

    更新日期:2010-02-01 00:00:00

  • Fibre Orientation in Human Fetal Heart and Ventricular Mechanics : A Small Perturbation Analysis.

    abstract::The study of the topological organisation of myocardial cells is a basic requirement for understanding the mechanical design of the normal and pathological heart. Anatomical observations show that cardiac muscle tissue has a highly specialized architecture. We have made new quantitative measurements of fibre orientati...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255849908907980

    authors: Ohayon J,Usson Y,Jouk PS,Cai H

    更新日期:1999-01-01 00:00:00

  • Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH.

    abstract::Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative mot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903064897

    authors: Zoghi-Moghadam M,Sadegh AM

    更新日期:2009-02-01 00:00:00

  • An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees.

    abstract::A computational model of an oscillatory laminar flow of an incompressible Newtonian fluid has been carried out in the proximal part of human tracheobronchial trees, either normal or with a strongly stenosed right main bronchus. After acquisition with a multislice spiral CT, the thoracic images are processed to reconst...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500289624

    authors: Fetita C,Mancini S,Perchet D,Prêteux F,Thiriet M,Vial L

    更新日期:2005-08-01 00:00:00