Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

Abstract:

:Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is highly sensitive to the spatial balance control properties of the locomotor system. The aim of this research was to investigate the regularity and complexity of the MTC time series due to healthy ageing and locomotors' disorders. MTC data from 30 healthy young (HY), 27 healthy elderly (HE) and 10 falls risk (FR) elderly subjects with balance problems were analysed. Continuous MTC data were collected and using the first 500 data points, MTC mean, standard deviation (SD) and entropy-based complexity analysis were performed using sample entropy (SampEn) for different window lengths (m) and filtering levels (r). The MTC SampEn values were lower in the FR group compared to the HY and HE groups for all m and r. The HY group had a greater mean SampEn value than both HE and FR reflecting higher complexity in their MTC series. The mean SampEn values of HY and FR groups were found significantly different for m = 2, 4, 5 and r = (0.1-0.9) × SD, (0.3-0.9) × SD and (0.3-0.9) × SD, respectively. They were also significant difference between HE and FR groups for m = 4-5 and r = (0.3-0.7) × SD, but no significant differences were seen between HY and HE groups for any m and r. A significant correlation of SampEn with SD of MTC was revealed for the HY and HE groups only, suggesting that locomotor disorders could significantly change the regularity or the complexity of the MTC series while healthy ageing does not. These results can be usefully applied to the early diagnosis of common gait pathologies.

authors

Karmakar C,Khandoker A,Begg R,Palaniswami M

doi

10.1080/10255842.2011.628943

subject

Has Abstract

pub_date

2013-01-01 00:00:00

pages

554-64

issue

5

eissn

1025-5842

issn

1476-8259

journal_volume

16

pub_type

杂志文章
  • Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study.

    abstract::In order to improve the reliability of children's models, the aim of this study was to determine the subject-specific masses and 3D locations of the centres of mass (CoM) of body segments using biplanar X-rays. Previous methods, validated on upper leg segments, were applied to the whole body. Six children and six adul...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255841003717608

    authors: Sandoz B,Laporte S,Skalli W,Mitton D

    更新日期:2010-12-01 00:00:00

  • A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    abstract::The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1321113

    authors: Dong S,Huang Z,Tang L,Zhang X,Zhang Y,Jiang Y

    更新日期:2017-07-01 00:00:00

  • An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue.

    abstract::Oral cancer surgery has a negative influence on the quality of life (QOL). As a result of the complex physiology involved in oral functions, estimation of surgical effects on functionality remains difficult. We present a user-friendly biomechanical simulation of tongue surgery, including closure with suturing and scar...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1599362

    authors: Kappert KDR,van Alphen MJA,van Dijk S,Smeele LE,Balm AJM,van der Heijden F

    更新日期:2019-06-01 00:00:00

  • Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture.

    abstract::The effect on the signal amplitude of ultrasonic waves propagating along cortical bone plates was modelled using a 2D Finite Difference code. Different healing stages, represented by modified fracture geometries were introduced to the plate model. A simple transverse and oblique fracture filled with water was introduc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701502387

    authors: Dodd SP,Miles AW,Gheduzzi S,Humphrey VF,Cunningham JL

    更新日期:2007-10-01 00:00:00

  • 3D finite element modeling of pelvic organ prolapse.

    abstract:OBJECTIVES:The purpose of this study is to develop a validated 3D finite element model of the pelvic floor system which can offer insights into the mechanics of anterior vaginal wall prolapse and have the ability to assess biomedical device treatment methods. The finite element results should accurately mimic the clini...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1186662

    authors: Yang Z,Hayes J,Krishnamurty S,Grosse IR

    更新日期:2016-12-01 00:00:00

  • Image-guided surgery: from X-rays to virtual reality.

    abstract::Since the discovery of X-rays, medical imaging has played a major role in the guidance of surgical procedures. While medical imaging began with simple X-ray plates to indicate the presence of foreign objects within the human body, the advent of the computer has been a major factor in the recent development of this fie...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840008907997

    authors: Peters TM

    更新日期:2000-01-01 00:00:00

  • Strategies towards rapid generation of forefoot model incorporating realistic geometry of metatarsals encapsulated into lumped soft tissues for personalized finite element analysis.

    abstract::Use of finite element (FE) foot model as a clinical diagnostics tool is likely to improve the specificity of foot injury predictions in the diabetic population. Here we proposed a novel workflow for rapid construction of foot FE model incorporating realistic geometry of metatarsals encapsulated into lumped forefoot's ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370458

    authors: Chen WM,Lee SJ,Lee PVS

    更新日期:2017-10-01 00:00:00

  • Identification and characterisation of regional variations in the material properties of ureter according to microstructure.

    abstract::There are few previous studies on the elastic properties of ureter and most have been limited to essentially one-dimensional deformation measurements. The object of this study was, therefore, to identify regional variations in the multiaxial behaviour of rabbit ureter, subjected to in vitro inflation/extension testing...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.761692

    authors: Sokolis DP

    更新日期:2014-11-01 00:00:00

  • Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    abstract::This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and soci...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.666532

    authors: Sunbuloglu E,Bozdag E,Toprak T,Islak C

    更新日期:2013-01-01 00:00:00

  • Validation performance comparison for finite element models of the human brain.

    abstract::The objective of this study was to compare the performance of six validated brain finite element (FE) models to localized brain motion validation data in five experimental configurations. Model performance was measured using the objective metric CORA (CORrelation and Analysis), where higher ratings represent better co...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1340462

    authors: Miller LE,Urban JE,Stitzel JD

    更新日期:2017-09-01 00:00:00

  • Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.

    abstract::We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by com...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601068638

    authors: Steele BN,Olufsen MS,Taylor CA

    更新日期:2007-02-01 00:00:00

  • An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.

    abstract::The rate of bone loss is subject to considerable variation between individuals. With the 'mechanostat' model of Frost, genetic variations in bone mechanoresponsiveness are modelled by different mechanostat 'setpoints'--which may also change with age or disease. In this paper, the following setpoints are used: epsilonm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802136150

    authors: Mulvihill BM,Prendergast PJ

    更新日期:2008-10-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport.

    abstract::This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith-Simmons equations governing molecular-motor-assisted transport in neurons. It ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903505154

    authors: Kuznetsov AV

    更新日期:2010-12-01 00:00:00

  • Assessment of mechanical integrity for drug-eluting renal stent with micro-sized drug reservoirs.

    abstract::The drug-eluting stent (DES) has become the gold standard worldwide for the treatment of cardiovascular diseases. In recent years, an innovative variation of the DES with micro-sized drug reservoirs has been introduced. It allows programmable drug delivery with both spatial and temporal control and has several potenti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.670851

    authors: Hsiao HM,Chiu YH

    更新日期:2013-01-01 00:00:00

  • Propagation of registration errors into the change in maximum total point motion for determining stability of tibial baseplates.

    abstract::The change in maximum total point motion (ΔMTPM) is used to predict long-term risk of tibial baseplate loosening, however, effects of registration error on ΔMTPM have not been quantified for marker-based and model-based radiostereometric analysis (RSA). Registration errors for marker-based and model-based RSA were app...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1865324

    authors: Niesen AE,Hull ML

    更新日期:2021-01-05 00:00:00

  • Finite element modelling and simulations in dentistry: a bibliography 1990-2003.

    abstract::The paper gives a bibliographical review of the finite element modelling and simulations in dentistry from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2003. At the end of this pape...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type:

    doi:10.1080/10255840412331309243

    authors: Mackerle J

    更新日期:2004-10-01 00:00:00

  • An assessment of swinger techniques for the playground swing oscillatory motion.

    abstract::Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger tech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.572280

    authors: Linge SO

    更新日期:2012-01-01 00:00:00

  • Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    abstract::Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh gen...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.499869

    authors: Ramme AJ,Shivanna KH,Magnotta VA,Grosland NM

    更新日期:2011-10-01 00:00:00

  • Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart.

    abstract::Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1183122

    authors: Nikou A,Dorsey SM,McGarvey JR,Gorman JH 3rd,Burdick JA,Pilla JJ,Gorman RC,Wenk JF

    更新日期:2016-12-01 00:00:00

  • Flexural and creep properties of human jaw compact bone for FEA studies.

    abstract::The aim of this work was to improve the constitutive model of the human mandible and dentition system by taking into account the non-linear material properties of the structural boney matrix that forms the human jaw bone or mandible. Due to the specific structure of the jaw bone the time dependence of the mechanical p...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840310001637257

    authors: Vitins V,Dobelis M,Middleton J,Limbert G,Knets I

    更新日期:2003-10-01 00:00:00

  • Soft tissue modelling for applications in virtual surgery and surgical robotics.

    abstract::Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitatin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840802020412

    authors: Famaey N,Vander Sloten J

    更新日期:2008-08-01 00:00:00

  • Physiological complexity of gait is decreased in individuals with chronic stroke.

    abstract::Complexity represents the adaptability of the biological system, therefore the assessment of complexity during tasks such as walking may be particularly useful when attempting to better understand the recovery processes after stroke. The purpose of this study was to determine whether the complexity of lower extremity ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1578961

    authors: Dugan EL,Combs-Miller SA

    更新日期:2019-05-01 00:00:00

  • A multi-body dynamics study on a weight-drop test of rat brain injury.

    abstract::Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI s...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1280733

    authors: Yan W,Sossou G,Rajan R

    更新日期:2017-05-01 00:00:00

  • Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    abstract::In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Z...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.664637

    authors: Silvatti AP,Cerveri P,Telles T,Dias FA,Baroni G,Barros RM

    更新日期:2013-01-01 00:00:00

  • An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.

    abstract::Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advanta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545949

    authors: Saleh MD,Eswaran C

    更新日期:2012-01-01 00:00:00

  • Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA.

    abstract::Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the st...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1309394

    authors: Dos Santos MBF,Meloto GO,Bacchi A,Correr-Sobrinho L

    更新日期:2017-06-01 00:00:00

  • Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    abstract::Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.951926

    authors: Karakolis T,Callaghan JP

    更新日期:2015-01-01 00:00:00