Image-guided surgery: from X-rays to virtual reality.

Abstract:

:Since the discovery of X-rays, medical imaging has played a major role in the guidance of surgical procedures. While medical imaging began with simple X-ray plates to indicate the presence of foreign objects within the human body, the advent of the computer has been a major factor in the recent development of this field. Imaging techniques have grown greatly in their sophistication and can now provide the surgeon with high quality three-dimensional images depicting not only the normal anatomy and pathology, but also vascularity and function. One key factor in the advances in Image-Guided Surgery (IGS) is the ability not only to register images derived from the various imaging modalities amongst themselves, but also to register them to the patient. The other crucial aspect of IGS is the ability to track instruments in real time during the procedure, and to portray them as part of a realistic model of the operative volume. Stereoscopic and virtual-reality techniques can usefully enhance the visualization process. IGS nevertheless relies heavily on the assumption that the images acquired prior to surgery, and upon which the surgical guidance is based, accurately represent the morphology of the tissue during the surgical procedure. In many instances this assumption is invalid, and intra-operative real-time imaging, using interventional MRI, Ultrasound, and electrophysiological recordings are often employed to overcome this limitation. Although now in extensive clinical use, IGS is often currently perceived as an intrusion into the operating room. It must evolve towards becoming a routine surgical tool, but this will only happen if natural and intuitive human interfaces are developed for these systems.

authors

Peters TM

doi

10.1080/10255840008907997

keywords:

subject

Has Abstract

pub_date

2000-01-01 00:00:00

pages

27-57

issue

1

eissn

1025-5842

issn

1476-8259

pii

I291L001000

journal_volume

4

pub_type

杂志文章,评审
  • Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation.

    abstract::In this article, we discuss an application of a fictitious domain method to the numerical simulation of the mechanical process induced by press-fitting cementless femoral implants in total hip replacement surgeries. Here, the primary goal is to demonstrate the feasibility of the method and its advantages over competin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545822

    authors: Kallivokas LF,Na SW,Ghattas O,Jaramaz B

    更新日期:2012-01-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • Study of age-related changes in Middle ear transfer function.

    abstract::Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles de...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1632297

    authors: Zhou L,Shen N,Feng M,Liu H,Duan M,Huang X

    更新日期:2019-10-01 00:00:00

  • A computational study of the EN 1078 impact test for bicycle helmets using a realistic subject-specific finite element head model.

    abstract::In the present study, the free fall impact test in accordance with the EN1078 standard for certification of bicycle helmets is replicated using numerical simulations. The impact scenario is simulated using an experimentally validated, patient-specific head model equipped with and without a bicycle helmet. Head acceler...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1511775

    authors: Sandberg M,Tse KM,Tan LB,Lee HP

    更新日期:2018-09-01 00:00:00

  • Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    abstract::In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Z...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.664637

    authors: Silvatti AP,Cerveri P,Telles T,Dias FA,Baroni G,Barros RM

    更新日期:2013-01-01 00:00:00

  • A computational prediction for the effective drug and stem cell treatment of human airway burns.

    abstract::Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-elem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1105966

    authors: Park S

    更新日期:2016-01-01 00:00:00

  • Time-dependent elastohydrodynamic lubrication analysis of total knee replacement under walking conditions.

    abstract::This work is concerned with the lubrication analysis of artificial knee joints, which plays an increasing significant role in clinical performance and longevity of components. Time-dependent elastohydrodynamic lubrication analysis for normal total knee replacement is carried out under the cyclic variation in both load...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.485569

    authors: Su Y,Yang P,Fu Z,Jin Z,Wang C

    更新日期:2011-06-01 00:00:00

  • Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis.

    abstract::Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1584795

    authors: Ghaneei M,Ekyalimpa R,Westover L,Parent EC,Adeeb S

    更新日期:2019-05-01 00:00:00

  • Automated gap-filling for marker-based biomechanical motion capture data.

    abstract::Marker-based motion capture presents the problem of gaps, which are traditionally processed using motion capture software, requiring intensive manual input. We propose and study an automated method of gap-filling that uses inverse kinematics (IK) to close the loop of an iterative process to minimize error, while nearl...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1789971

    authors: Camargo J,Ramanathan A,Csomay-Shanklin N,Young A

    更新日期:2020-11-01 00:00:00

  • Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    abstract::A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.903932

    authors: Gouinaud L,Katz I,Martin A,Hazebroucq J,Texereau J,Caillibotte G

    更新日期:2015-01-01 00:00:00

  • Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    abstract::This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a thre...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792809

    authors: Wei F,Fong DT,Chan KM,Haut RC

    更新日期:2015-01-01 00:00:00

  • Jaw motor plasticity in health and disease.

    abstract::The human jaw's structure-function relationships are complex. A recent example of this complexity is the lateral pterygoid muscle which we now consider as a single unit made up of functional regions with activity in each dependent on the biomechanical demands of the task. We have also characterised the effects on the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903453090

    authors: Peck CC,Wirianski A,Murray GM

    更新日期:2010-08-01 00:00:00

  • Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration.

    abstract::To explore which TLIF techniques are advantageous in reducing the risk of complications and conducive to bone fusion under the vibration. The L1-L5 finite element lumbar model was modified to simulate three different TLIF techniques (a unilateral standard cage, a crescent-shaped cage, and bilateral standard cages). Th...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1829604

    authors: Wang QD,Guo LX

    更新日期:2020-10-13 00:00:00

  • Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions.

    abstract::Three-dimensional finite element models of the thoracolumbar junction (T12-L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography im...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.636741

    authors: Erdem I,Truumees E,van der Meulen MC

    更新日期:2013-01-01 00:00:00

  • Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    abstract::In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary condit...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.497490

    authors: Dinarvand S

    更新日期:2011-10-01 00:00:00

  • The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    abstract::Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens fr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1041022

    authors: Baumann AP,Shi X,Roeder RK,Niebur GL

    更新日期:2016-01-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Propagation of registration errors into the change in maximum total point motion for determining stability of tibial baseplates.

    abstract::The change in maximum total point motion (ΔMTPM) is used to predict long-term risk of tibial baseplate loosening, however, effects of registration error on ΔMTPM have not been quantified for marker-based and model-based radiostereometric analysis (RSA). Registration errors for marker-based and model-based RSA were app...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1865324

    authors: Niesen AE,Hull ML

    更新日期:2021-01-05 00:00:00

  • Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.

    abstract::The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gy...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1569638

    authors: Castro APG,Ruben RB,Gonçalves SB,Pinheiro J,Guedes JM,Fernandes PR

    更新日期:2019-05-01 00:00:00

  • Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study.

    abstract::A novel, coarse-grained, single-framework 'Eulerian' model for blood flow in the microvascular circulation is presented and used to estimate the variations in flow properties that accrue from all of the following: (i) wall position variation, associated with the endothelial cells' (ECs) shape, (ii) glycocalyx layer (G...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.799146

    authors: Pontrelli G,Halliday I,Spencer TJ,König CS,Collins MW

    更新日期:2015-01-01 00:00:00

  • Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture.

    abstract::The effect on the signal amplitude of ultrasonic waves propagating along cortical bone plates was modelled using a 2D Finite Difference code. Different healing stages, represented by modified fracture geometries were introduced to the plate model. A simple transverse and oblique fracture filled with water was introduc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701502387

    authors: Dodd SP,Miles AW,Gheduzzi S,Humphrey VF,Cunningham JL

    更新日期:2007-10-01 00:00:00

  • Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions.

    abstract::Finite element analysis provides a means of describing cellular mechanics in tissue, which can be useful in understanding and predicting physiological and pathological changes. Many prior studies have been limited to simulations of models containing single cells, which may not accurately describe the influence of mech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.900545

    authors: Bennetts CJ,Sibole S,Erdemir A

    更新日期:2015-01-01 00:00:00

  • Determining the location of hip joint centre: application of a conchoid's shape to the acetabular cartilage surface of magnetic resonance images.

    abstract::Preoperative planning, or intraoperative navigation of hip surgery, including joint-preserving procedures such as osteotomy or joint-replacing procedures such as total arthroplasty, needs to be performed with a high degree of accuracy to ensure a successful outcome. The ability to precisely localise the hip joint rota...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.495064

    authors: Kang MJ,Sadri H,Stern R,Magnenat-Thalmann N,Hoffmeyer P,Ji HS

    更新日期:2011-01-01 00:00:00

  • An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.

    abstract::The rate of bone loss is subject to considerable variation between individuals. With the 'mechanostat' model of Frost, genetic variations in bone mechanoresponsiveness are modelled by different mechanostat 'setpoints'--which may also change with age or disease. In this paper, the following setpoints are used: epsilonm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802136150

    authors: Mulvihill BM,Prendergast PJ

    更新日期:2008-10-01 00:00:00

  • Mathematical modeling of the Fontan blood circulation supported with pediatric ventricular assist device.

    abstract::The decompensated univentricular circulation is identified as one of the most challenging conditions and the application of the mechanical circulatory support (MCS) devices is proposed as therapeutic option for Fontan failure. Modelling methodologies are reported to identify the optimized types, extent and duration of...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1843640

    authors: Rubtsova E,Markov A,Selishchev S,Karimov JH,Telyshev D

    更新日期:2021-01-11 00:00:00

  • A two population model of prion transport through a tunnelling nanotube.

    abstract::This article develops a two prion population model that simulates prion trafficking between an infected dendritic cell and a neuron. The situation when the two cells are connected by a tunnelling nanotube (TNT) is simulated. Two mechanisms of prion transport are considered: lateral diffusion in the TNT membrane and ac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.763938

    authors: Kuznetsov IA,Kuznetsov AV

    更新日期:2014-11-01 00:00:00

  • Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.

    abstract::A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an or...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.737458

    authors: Wang X,Wang L,Zhou J,Hu Y

    更新日期:2014-08-01 00:00:00

  • Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    abstract::Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1096348

    authors: Alkhamaali ZK,Crocombe AD,Solan MC,Cirovic S

    更新日期:2016-01-01 00:00:00

  • Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model.

    abstract::Cell migration relies on traction forces in order to propel a cell. Several computational models have been developed that help explain the trajectory that cells take during migration, but little attention has been placed on traction forces during this process. Here, we investigated the spatiotemporal dynamics of cell ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554412

    authors: Han SJ,Sniadecki NJ

    更新日期:2011-05-01 00:00:00

  • Optimal mechanical design of anatomical post-systems for endodontic restoration.

    abstract::This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcement...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903065530

    authors: Maceri F,Martignoni M,Vairo G

    更新日期:2009-02-01 00:00:00