Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions.

Abstract:

:Finite element analysis provides a means of describing cellular mechanics in tissue, which can be useful in understanding and predicting physiological and pathological changes. Many prior studies have been limited to simulations of models containing single cells, which may not accurately describe the influence of mechanical interactions between cells. It is desirable to generate models that more accurately reflect the cellular organisation in tissue in order to evaluate the mechanical function of cells. However, as the model geometry becomes more complicated, manual model generation can become laborious. This can be prohibitive if a large number of distinct cell-scale models are required, for example, in multiscale modelling or probabilistic analysis. Therefore, a method was developed to automatically generate tissue-specific cellular models of arbitrary complexity, with minimal user intervention. This was achieved through a set of scripts, which are capable of generating both sample-specific models, with explicitly defined geometry, and tissue-specific models, with geometry derived implicitly from normal statistical distributions. Models are meshed with tetrahedral (TET) elements of variable size to sufficiently discretise model geometries at different spatial scales while reducing model complexity. The ability of TET meshes to appropriately simulate the biphasic mechanical response of a single-cell model is established against that of a corresponding hexahedral mesh for an illustrative use case. To further demonstrate the flexibility of this tool, an explicit model was developed from three-dimensional confocal laser scanning image data, and a set of models were generated from a statistical cellular distribution of the articular femoral cartilage. The tools presented herein are free and openly accessible to the community at large.

authors

Bennetts CJ,Sibole S,Erdemir A

doi

10.1080/10255842.2014.900545

subject

Has Abstract

pub_date

2015-01-01 00:00:00

pages

1293-304

issue

12

eissn

1025-5842

issn

1476-8259

journal_volume

18

pub_type

杂志文章
  • Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    abstract::The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages particip...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1032945

    authors: López-Nava IH,Muñoz-Meléndez A,Pérez Sanpablo AI,Alessi Montero A,Quiñones Urióstegui I,Núñez Carrera L

    更新日期:2016-01-01 00:00:00

  • Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

    abstract:OBJECTIVES:The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. MATERIALS AND METHODS:A mandibular bone model was obtained from a computed tomography scan. A three...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1507025

    authors: Macedo JP,Pereira J,Faria J,Souza JCM,Alves JL,López-López J,Henriques B

    更新日期:2018-09-01 00:00:00

  • In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices.

    abstract::When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the ski...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1655549

    authors: Barrios-Muriel J,Romero Sánchez F,Alonso Sánchez FJ,Rodríguez Salgado D

    更新日期:2019-11-01 00:00:00

  • Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.

    abstract::Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Homogeneous, Newtonian blood flow is simulated under steady conditions for the range of Reynolds numbers 10 < or ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000009742

    authors: Finol EA,Amon CH

    更新日期:2002-08-01 00:00:00

  • Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft.

    abstract::Local oxygen lack in arterial walls (hypoxia) plays a very important role in the initiation, progression and development of intimal hyperplasia (IH) and thrombosis. Aiming to find out whether a helical-type artery bypass graft (ABG) is hypoxia beneficial, a numerical study was carried out to compare oxygen transport b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.702764

    authors: Zheng T,Wen J,Jiang W,Deng X,Fan Y

    更新日期:2014-04-01 00:00:00

  • Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH.

    abstract::Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative mot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903064897

    authors: Zoghi-Moghadam M,Sadegh AM

    更新日期:2009-02-01 00:00:00

  • Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.

    abstract::Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared usi...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.574618

    authors: Callanan A,Morris LG,McGloughlin TM

    更新日期:2012-01-01 00:00:00

  • Modelling organelle transport after traumatic axonal injury.

    abstract::This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some m...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.820721

    authors: Kuznetsov IA,Kuznetsov AV

    更新日期:2015-01-01 00:00:00

  • The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

    abstract::Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1777546

    authors: Watson PJ,Fagan MJ,Dobson CA

    更新日期:2020-10-01 00:00:00

  • Comparing parametric solid modelling/reconfiguration, global shape modelling and free-form deformation for the generation of 3D digital models of femurs from X-ray images.

    abstract::At present, computer assisted surgery systems help orthopaedic surgeons both plan and perform surgical procedures. To enable these systems to function, it is crucial to have at one's disposal 3D models of anatomical structures, surgical tools and prostheses (if required). This paper analyses and compares three methods...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903077329

    authors: Filippi S,Motyl B,Bandera C

    更新日期:2009-02-01 00:00:00

  • The effects of manufacturing tolerances and assembly force on the volumetric wear at the taper junction in modular total hip arthroplasty.

    abstract::Fretting and corrosion at the taper-head interface in total hip arthroplasty has been reported as a potential cause of early failure of the implant system. The finite element (FE) method can be used to study the mechanics at the taper junction that are difficult to assess experimentally. Taper mismatch is one of the f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1627524

    authors: Bitter T,Khan I,Marriott T,Lovelady E,Verdonschot N,Janssen D

    更新日期:2019-10-01 00:00:00

  • Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture.

    abstract::The effect on the signal amplitude of ultrasonic waves propagating along cortical bone plates was modelled using a 2D Finite Difference code. Different healing stages, represented by modified fracture geometries were introduced to the plate model. A simple transverse and oblique fracture filled with water was introduc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701502387

    authors: Dodd SP,Miles AW,Gheduzzi S,Humphrey VF,Cunningham JL

    更新日期:2007-10-01 00:00:00

  • QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling.

    abstract::Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation, it is essential to carefully assess whether the boundary condition (BC) modeling matches the experimental c...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1006209

    authors: Rossman T,Kushvaha V,Dragomir-Daescu D

    更新日期:2016-01-01 00:00:00

  • Maxillary expansion treatment using bone anchors: development and validation of a 3D finite element model.

    abstract:OBJECTIVE:Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA). MATERIALS AND METHODS:A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm di...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601098098

    authors: Fang Y,Lagravère MO,Carey JP,Major PW,Toogood RR

    更新日期:2007-04-01 00:00:00

  • Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance.

    abstract::In some cases of aortic valve leaflet disease, the implant of a stentless biological prosthesis represents an excellent option for aortic valve replacement (AVR). In particular, if compared with the implant of mechanical valves, it provides a more physiological haemodynamic performance and a reduced thrombogeneticity,...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.681645

    authors: Auricchio F,Conti M,Ferrara A,Morganti S,Reali A

    更新日期:2014-01-01 00:00:00

  • The Biomechanical Effects of Sagittal Split Ramus Osteotomy on Temporomandibular Joint.

    abstract::The aim of this study was to evaluate the stress distributions and deformations of the temporomandibular joint (TMJ) during different periods before and after sagittal split ramus osteotomy (SSRO). A three-dimensional finite element model of the mandible and TMJ was established, based on the preoperative CT of a patie...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1504034

    authors: Liu Z,Shu J,Zhang Y,Fan Y

    更新日期:2018-08-01 00:00:00

  • A neurofuzzy inference system based on biomechanical features for the evaluation of the effects of physical training.

    abstract::The current study aimed to evaluate physical training effects. For this purpose, a classifier was implemented by taking into account biomechanical features selected from force-plate measurements and a neurofuzzy algorithm for data management and relevant decision-making. Measurements included two sets of sit-to-stand ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,随机对照试验

    doi:10.1080/10255840701550915

    authors: Vannozzi G,Pecoraro F,Caserotti P,Cappozzo A

    更新日期:2008-02-01 00:00:00

  • Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.

    abstract::To extend the use of computational techniques like finite element analysis to clinical settings, it would be beneficial to have the ability to generate a unique model for every subject quickly and efficiently. This work is an extension of two previously developed mapped meshing tools that utilised force and displaceme...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.629614

    authors: Kallemeyn NA,Natarajan A,Magnotta VA,Grosland NM

    更新日期:2013-01-01 00:00:00

  • Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study.

    abstract::The aim of this study was to measure the cardiac output and stroke volume for a healthy subject by coupling an echocardiogram Doppler (echo-Doppler) method with a fluid-structure interaction (FSI) simulation at rest and during exercise. Blood flow through aortic valve was measured by Doppler flow echocardiography. Aor...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.771179

    authors: Bahraseman HG,Hassani K,Navidbakhsh M,Espino DM,Sani ZA,Fatouraee N

    更新日期:2014-01-01 00:00:00

  • The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.

    abstract::Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of mo...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.564162

    authors: Gras LL,Mitton D,Crevier-Denoix N,Laporte S

    更新日期:2012-01-01 00:00:00

  • A procedure to refine joint kinematic assessments: Functional Alignment.

    abstract::Functional Alignment is a new method to determine the orientation of a joint's primary rotational axis and the associated movement. It employs three unique concepts. First, data analyses are based upon assessment of spatial positions and not upon movement in a time sequence. Second, analyses are conducted on derived j...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545821

    authors: Ball KA,Greiner TM

    更新日期:2012-01-01 00:00:00

  • Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration.

    abstract::To explore which TLIF techniques are advantageous in reducing the risk of complications and conducive to bone fusion under the vibration. The L1-L5 finite element lumbar model was modified to simulate three different TLIF techniques (a unilateral standard cage, a crescent-shaped cage, and bilateral standard cages). Th...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1829604

    authors: Wang QD,Guo LX

    更新日期:2020-10-13 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    abstract::This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and soci...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.666532

    authors: Sunbuloglu E,Bozdag E,Toprak T,Islak C

    更新日期:2013-01-01 00:00:00

  • Jaw motor plasticity in health and disease.

    abstract::The human jaw's structure-function relationships are complex. A recent example of this complexity is the lateral pterygoid muscle which we now consider as a single unit made up of functional regions with activity in each dependent on the biomechanical demands of the task. We have also characterised the effects on the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903453090

    authors: Peck CC,Wirianski A,Murray GM

    更新日期:2010-08-01 00:00:00

  • Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.

    abstract::The purpose of this study was to propose an innovative approach of setting outlet boundary conditions for the computational fluid dynamics (CFD) simulation of human common carotid arteries (CCAs) bifurcation based on the concept of energy loss minimisation at flow bifurcation. Comparisons between this new approach and...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.625358

    authors: Zhang Y,Furusawa T,Sia SF,Umezu M,Qian Y

    更新日期:2013-01-01 00:00:00

  • An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.

    abstract::The rate of bone loss is subject to considerable variation between individuals. With the 'mechanostat' model of Frost, genetic variations in bone mechanoresponsiveness are modelled by different mechanostat 'setpoints'--which may also change with age or disease. In this paper, the following setpoints are used: epsilonm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802136150

    authors: Mulvihill BM,Prendergast PJ

    更新日期:2008-10-01 00:00:00

  • Optimisation of solute transport in dialysers using a three-dimensional finite volume model.

    abstract::Dialyser manufacturers only provide limited information about mass removal under well-defined flow and solute conditions in commercially available dialysers for hemodialysis. This computational study aimed at assessing the solute transport efficiency in a dialyser for different geometries (fiber lengths and diameters)...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601002728

    authors: Eloot S,Vierendeels J,Verdonck P

    更新日期:2006-12-01 00:00:00

  • Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.

    abstract::The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1577398

    authors: Qiao Y,Zeng Y,Ding Y,Fan J,Luo K,Zhu T

    更新日期:2019-05-01 00:00:00

  • Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.

    abstract::This article is focused on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible, due to a lateral bite on the leftmost premolar. Based on experimental evidence, orthotropy of the elastic properties of the bone tissue has been adopted. The trajectories of anisotropic elastic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600661482

    authors: Kober C,Erdmann B,Hellmich C,Sader R,Zeilhofer HF

    更新日期:2006-04-01 00:00:00