Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

Abstract:

OBJECTIVES:The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. MATERIALS AND METHODS:A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2 mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. RESULTS:On vertical loading, maximum von Mises stresses were recorded at 6-7 MPa for trabecular bone while values ranging from 73 up to 118 MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21 MPa for trabecular bone while values at 150 MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2 MPa while von Mises stress values at 15 MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5 MPa, while von Mises stress values at 35 MPa were recorded for >99.4vol.% cortical bone. CONCLUSIONS:Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.

authors

Macedo JP,Pereira J,Faria J,Souza JCM,Alves JL,López-López J,Henriques B

doi

10.1080/10255842.2018.1507025

subject

Has Abstract

pub_date

2018-09-01 00:00:00

pages

655-662

issue

12

eissn

1025-5842

issn

1476-8259

journal_volume

21

pub_type

杂志文章
  • Calibration of crushable foam plasticity models for synthetic bone material for use in finite element analysis of acetabular cup deformation and primary stability.

    abstract::Polyurethane (PU) foam is a material often used in biomechanical experiments and demands for the definition of crushable foam plasticity (CFP) in numerical simulations of the primary stability and deformation of implants, to describe the crushing behaviour appropriately. Material data of PU foams with five different d...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1524884

    authors: Schulze C,Vogel D,Sander M,Bader R

    更新日期:2019-01-01 00:00:00

  • Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    abstract::Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to eval...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.916698

    authors: Saul KR,Hu X,Goehler CM,Vidt ME,Daly M,Velisar A,Murray WM

    更新日期:2015-01-01 00:00:00

  • Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration.

    abstract::To explore which TLIF techniques are advantageous in reducing the risk of complications and conducive to bone fusion under the vibration. The L1-L5 finite element lumbar model was modified to simulate three different TLIF techniques (a unilateral standard cage, a crescent-shaped cage, and bilateral standard cages). Th...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1829604

    authors: Wang QD,Guo LX

    更新日期:2020-10-13 00:00:00

  • A mathematical model of epiphyseal development: hypothesis of growth pattern of the secondary ossification centre.

    abstract::This paper introduces a 'hypothesis about the growth pattern of the secondary ossification centre (SOC)', whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular fac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.484810

    authors: Garzón-Alvarado DA,Peinado Cortés LM,Cárdenas Sandoval RP

    更新日期:2011-01-01 00:00:00

  • Medical image registration using fuzzy theory.

    abstract::Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical ima...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.557372

    authors: Pan M,Tang J,Xiong Q

    更新日期:2012-01-01 00:00:00

  • Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    abstract::Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second prem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902788579

    authors: Khani MM,Tafazzoli-Shadpour M,Aghajani F,Naderi P

    更新日期:2009-10-01 00:00:00

  • Flexural and creep properties of human jaw compact bone for FEA studies.

    abstract::The aim of this work was to improve the constitutive model of the human mandible and dentition system by taking into account the non-linear material properties of the structural boney matrix that forms the human jaw bone or mandible. Due to the specific structure of the jaw bone the time dependence of the mechanical p...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840310001637257

    authors: Vitins V,Dobelis M,Middleton J,Limbert G,Knets I

    更新日期:2003-10-01 00:00:00

  • Role of differential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis.

    abstract::Cell-cell and cell-matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell-cell (JCC) ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792917

    authors: Singh J,Hussain F,Decuzzi P

    更新日期:2015-01-01 00:00:00

  • The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.

    abstract::The purpose of this simulation study was to analyze the effect of variation in Knee-Ankle-Foot-Orthosis stiffness on the joint power and the energy cost of walking. The effect of contractile tissue was simulated using linear elastic spring and viscous dampers in knee and ankle joints. Then, joint angles, ground reacti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1438417

    authors: Abtahi SMA,Jamshidi N,Ghaziasgar A

    更新日期:2018-02-01 00:00:00

  • How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?

    abstract::Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.627682

    authors: Loerakker S,Solis LR,Bader DL,Baaijens FP,Mushahwar VK,Oomens CW

    更新日期:2013-01-01 00:00:00

  • Muscle parameters estimation based on biplanar radiography.

    abstract::The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Res...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1171855

    authors: Dubois G,Rouch P,Bonneau D,Gennisson JL,Skalli W

    更新日期:2016-11-01 00:00:00

  • Artefact-reduced kinematics measurement using a geometric finger model with mixture-prior particle filtering.

    abstract::It is challenging to measure the finger's kinematics of underlying bones in vivo. This paper presents a new method of finger kinematics measurement, using a geometric finger model and several markers deliberately stuck on skin surface. Using a multiple-view camera system, the optimal motion parameters of finger model ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.643467

    authors: Chang CW,Kuo LC,Jou IM,Su FC,Sun YN

    更新日期:2013-01-01 00:00:00

  • Skeletonization of volumetric angiograms for display.

    abstract::The display of three-dimensional angiograms can benefit from the knowledge of quantitative shape features such as tangent and curvature of the centerline of vessels. These can be obtained from a curve-like skeleton representation. If connectivity and topology are preserved, and if geometrical constraints such as smoot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000003874

    authors: Yi D,Hayward V

    更新日期:2002-10-01 00:00:00

  • Does overlay preparation design affect polymerization shrinkage stress distribution? A 3D FEA study.

    abstract::This study evaluated the polymerization shrinkage stress of three tooth preparation designs for indirect ceramic overlay by finite element analysis: isthmus preparation (IST); without isthmus preparation (wIST); and non-retentive preparation (nRET). The models were created based in prepared dental typodonts and were d...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1866561

    authors: de Andrade GS,Pinto ABA,Tribst JPM,Chun EP,Borges ALS,de Siqueira Ferreira Anzaloni Saavedra G

    更新日期:2021-01-07 00:00:00

  • Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    abstract::Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consist...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.887698

    authors: Caballero AD,Laín S

    更新日期:2015-08-01 00:00:00

  • A human model for road safety: from geometrical acquisition to model validation with radioss.

    abstract::In order to investigate injury mechanisms, and to provide directions for road safety system improvements, the HUMOS project has lead to the development of a 3D finite element model of the human body in driving position. The model geometry was obtained from a 50th percentile adult male. It includes the description of a...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840310001606080

    authors: Behr M,Arnoux PJ,Serre T,Bidal S,Kang HS,Thollon L,Cavallero C,Kayvantash K,Brunet C

    更新日期:2003-08-01 00:00:00

  • Growing multiblock structures: a semi-automated approach to block placement for multiblock hexahedral meshing.

    abstract::Finite element (FE) analysis is a cornerstone of orthopaedic biomechanics research. Three-dimensional medical imaging provides sufficient resolution for the subject-specific FE models to be generated from these data-sets. FE model development requires discretisation of a three-dimensional domain, which can be the most...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.570338

    authors: Ramme AJ,Shivanna KH,Criswell AJ,Kallemeyn NA,Magnotta VA,Grosland NM

    更新日期:2012-01-01 00:00:00

  • Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA.

    abstract::Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the st...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1309394

    authors: Dos Santos MBF,Meloto GO,Bacchi A,Correr-Sobrinho L

    更新日期:2017-06-01 00:00:00

  • A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.

    abstract::Most of musculoskeletal models (MSKM) estimate the tibiofemoral joint reaction load at a single point or do not support large lower-limb ranges. This study aimed to adapt a generic MSKM that allows large knee and hip flexions to compute medial and lateral tibiofemoral contact forces (TFCF) during gait and squat tasks....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1757662

    authors: Bedo BLS,Catelli DS,Lamontagne M,Santiago PRP

    更新日期:2020-08-01 00:00:00

  • Numerical studies of the influence of various geometrical features of a multispiked connecting scaffold prototype on mechanical stresses in peri-implant bone.

    abstract::The multispiked connecting scaffold (MSC-scaffold) prototype is an essential innovation in the fixation of components of resurfacing arthroplasty (RA) endoprostheses, providing their entirely non-cemented and bone-tissue-preserving fixation in peri-articular bone. An FE study is proposed to evaluate the influence of g...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1480759

    authors: Uklejewski R,Winiecki M,Patalas A,Rogala P

    更新日期:2018-07-01 00:00:00

  • Determining the location of hip joint centre: application of a conchoid's shape to the acetabular cartilage surface of magnetic resonance images.

    abstract::Preoperative planning, or intraoperative navigation of hip surgery, including joint-preserving procedures such as osteotomy or joint-replacing procedures such as total arthroplasty, needs to be performed with a high degree of accuracy to ensure a successful outcome. The ability to precisely localise the hip joint rota...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.495064

    authors: Kang MJ,Sadri H,Stern R,Magnenat-Thalmann N,Hoffmeyer P,Ji HS

    更新日期:2011-01-01 00:00:00

  • Effects of medial collateral ligament release, limb correction, and soft tissue laxity on knee joint contact force distribution after medial opening wedge high tibial osteotomy: a computational study.

    abstract::In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated stand...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1549658

    authors: Purevsuren T,Khuyagbaatar B,Kim K,Kim YH

    更新日期:2019-02-01 00:00:00

  • Jaw motor plasticity in health and disease.

    abstract::The human jaw's structure-function relationships are complex. A recent example of this complexity is the lateral pterygoid muscle which we now consider as a single unit made up of functional regions with activity in each dependent on the biomechanical demands of the task. We have also characterised the effects on the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903453090

    authors: Peck CC,Wirianski A,Murray GM

    更新日期:2010-08-01 00:00:00

  • Kinematic analysis of over-determinate biomechanical systems.

    abstract::In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the over-determinate case. This is accomplished by introducing a constrained optimisati...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459412

    authors: Andersen MS,Damsgaard M,Rasmussen J

    更新日期:2009-08-01 00:00:00

  • Mechanical variables affecting balloon kyphoplasty outcome--a finite element study.

    abstract::It is still unclear how a vertebral fracture should be stabilised and strengthened without endangering the remaining intact bone of the augmented vertebra or the adjacent vertebrae. Numerical modelling may provide insight. To date, however, few finite element (FE) spine models have been developed which are both multi-...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.522183

    authors: Dabirrahmani D,Becker S,Hogg M,Appleyard R,Baroud G,Gillies M

    更新日期:2012-01-01 00:00:00

  • Feature selection based on a fuzzy complementary criterion: application to gait recognition using ground reaction forces.

    abstract::An efficient wavelet-based feature selection (FS) method is proposed in this paper for subject recognition using ground reaction force measurements. Our approach relies on a local fuzzy evaluation measure with respect to patterns that reveal the adequacy of data coverage for each feature. Furthermore, FS is driven by ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.554408

    authors: Moustakidis SP,Theocharis JB,Giakas G

    更新日期:2012-01-01 00:00:00

  • A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction.

    abstract::The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ord...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840008915267

    authors: Gielen AW,Oomens CW,Bovendeerd PH,Arts T,Janssen JD

    更新日期:2000-01-01 00:00:00

  • Multi disease-prediction framework using hybrid deep learning: an optimal prediction model.

    abstract::Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient's symptoms. For several ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1869726

    authors: Ampavathi A,Saradhi TV

    更新日期:2021-01-11 00:00:00

  • An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.

    abstract::Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advanta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545949

    authors: Saleh MD,Eswaran C

    更新日期:2012-01-01 00:00:00

  • A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.

    abstract::The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817405

    authors: Hainisch R,Kranzl A,Lin YC,Pandy MG,Gfoehler M

    更新日期:2020-09-17 00:00:00