Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation.

Abstract:

:In this article, we discuss an application of a fictitious domain method to the numerical simulation of the mechanical process induced by press-fitting cementless femoral implants in total hip replacement surgeries. Here, the primary goal is to demonstrate the feasibility of the method and its advantages over competing numerical methods for a wide range of applications for which the primary input originates from computed tomography-, magnetic resonance imaging- or other regular-grid medical imaging data. For this class of problems, the fictitious domain method is a natural choice, because it avoids the segmentation, surface reconstruction and meshing phases required by unstructured geometry-conforming simulation methods. We consider the implantation of a press-fit femoral artificial prosthesis as a prototype problem for sketching the application path of the methodology. Of concern is the assessment of the robustness and speed of the methodology, for both factors are critical if one were to consider patient-specific modelling. To this end, we report numerical results that exhibit optimal convergence rates and thus shed a favourable light on the approach.

authors

Kallivokas LF,Na SW,Ghattas O,Jaramaz B

doi

10.1080/10255842.2010.545822

subject

Has Abstract

pub_date

2012-01-01 00:00:00

pages

501-16

issue

5

eissn

1025-5842

issn

1476-8259

pii

935136865

journal_volume

15

pub_type

杂志文章
  • Soft tissue modelling for applications in virtual surgery and surgical robotics.

    abstract::Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitatin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840802020412

    authors: Famaey N,Vander Sloten J

    更新日期:2008-08-01 00:00:00

  • Shape optimization of a cementless hip stem for a minimum of interface stress and displacement.

    abstract::The primary stem stability is an essential factor for success of cementless hip stems. A correct choice of the stem geometry can improve the stem stability and, consequently, increase the life time of a hip implant. In this work, it is proposed a computational model for shape optimization of cementless hip stems. The ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840410001661637

    authors: Fernandes PR,Folgado J,Ruben RB

    更新日期:2004-02-01 00:00:00

  • Development of a three-dimensional body shape model of young children for child restraint design.

    abstract::The design of child restraints is guided in part by anthropometric data describing the distributions of body dimensions of children. However, three-dimensional body shape data have not been available for children younger than three years of age. This study presents body shape models for children weighing 9-23 kg in a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1521960

    authors: Jones MLH,Ebert SM,Reed MP,Klinich KD

    更新日期:2018-11-01 00:00:00

  • Effect of lumbar fasciae on the stability of the lower lumbar spine.

    abstract::The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370459

    authors: Choi HW,Kim YE

    更新日期:2017-10-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model.

    abstract::Convective transports in the vertebral end plate (VEP) play a significant role in the homeostasis of the spine. A few studies hypothesised that the hydraulic resistance or effective permeability of the VEP could be dependant upon fluid-flow direction. Results were influenced by species, region of interest within the e...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518960

    authors: Swider P,Accadbled F,Laffosse JM,Sales de Gauzy J

    更新日期:2012-01-01 00:00:00

  • A finite element comparison between the mechanical behaviour of rigid and resilient oral implants with respect to immediate loading.

    abstract::In this paper, a qualitative comparison between two types of dental implants with respect to their behaviour under immediate loading is presented. This analysis has been carried out using the finite element method. Since micromotions (and not the load) are responsible of the appearance of a fibrous interface avoiding ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500141593

    authors: Pérez del Palomar A,Arruga A,Cegoñino J,Doblaré M

    更新日期:2005-02-01 00:00:00

  • Dual-parameter optimisation of the elastic properties of skin.

    abstract::This paper presents a procedure for characterising the mechanical properties of skin using stochastic inverse identification. It is based on the minimisation of a cost function relative to the comparison between experimental suction experiments and their corresponding finite element models. Two different models are co...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.633904

    authors: Delalleau A,Josse G,Lagarde JM

    更新日期:2012-01-01 00:00:00

  • A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction.

    abstract::The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ord...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840008915267

    authors: Gielen AW,Oomens CW,Bovendeerd PH,Arts T,Janssen JD

    更新日期:2000-01-01 00:00:00

  • The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane.

    abstract::The 2D shape of the lumbar spine in the sagittal plane can be determined from lordosis angles measured between the corresponding end-plates of the vertebral bodies or by using an active shape model (ASM) of the vertebral body outline. The ASM was previously shown to be a more efficient and reliable method, but its acc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518962

    authors: Ali AH,Cowan AB,Gregory JS,Aspden RM,Meakin JR

    更新日期:2012-01-01 00:00:00

  • Finite element modelling and simulations in dentistry: a bibliography 1990-2003.

    abstract::The paper gives a bibliographical review of the finite element modelling and simulations in dentistry from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2003. At the end of this pape...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type:

    doi:10.1080/10255840412331309243

    authors: Mackerle J

    更新日期:2004-10-01 00:00:00

  • Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.

    abstract::A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an or...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.737458

    authors: Wang X,Wang L,Zhou J,Hu Y

    更新日期:2014-08-01 00:00:00

  • The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.

    abstract::Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of mo...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.564162

    authors: Gras LL,Mitton D,Crevier-Denoix N,Laporte S

    更新日期:2012-01-01 00:00:00

  • Muscle moment-arms: a key element in muscle-force estimation.

    abstract::A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependenc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.818666

    authors: Ingram D,Engelhardt C,Farron A,Terrier A,Müllhaupt P

    更新日期:2015-01-01 00:00:00

  • Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport.

    abstract::This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith-Simmons equations governing molecular-motor-assisted transport in neurons. It ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903505154

    authors: Kuznetsov AV

    更新日期:2010-12-01 00:00:00

  • Using the finite element method to model the biomechanics of the asymmetric mandible before, during and after skeletal correction by distraction osteogenesis.

    abstract::An approach was developed to evaluate the load transfer mechanism in the temporomandibular joint (TMJ) area before, during and after mandibular ramus elongation by distraction osteogenesis (DO). In a concerted approach using computer tomography, magnetic resonance imaging (MRI), and finite element analysis, three-dime...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500237953

    authors: Cattaneo PM,Kofod T,Dalstra M,Melsen B

    更新日期:2005-06-01 00:00:00

  • Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.

    abstract::The purpose of this study was to propose an innovative approach of setting outlet boundary conditions for the computational fluid dynamics (CFD) simulation of human common carotid arteries (CCAs) bifurcation based on the concept of energy loss minimisation at flow bifurcation. Comparisons between this new approach and...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.625358

    authors: Zhang Y,Furusawa T,Sia SF,Umezu M,Qian Y

    更新日期:2013-01-01 00:00:00

  • Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    abstract::In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary condit...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.497490

    authors: Dinarvand S

    更新日期:2011-10-01 00:00:00

  • 3D finite element modeling of pelvic organ prolapse.

    abstract:OBJECTIVES:The purpose of this study is to develop a validated 3D finite element model of the pelvic floor system which can offer insights into the mechanics of anterior vaginal wall prolapse and have the ability to assess biomedical device treatment methods. The finite element results should accurately mimic the clini...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1186662

    authors: Yang Z,Hayes J,Krishnamurty S,Grosse IR

    更新日期:2016-12-01 00:00:00

  • A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics.

    abstract::The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatom...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459404

    authors: Cheze L,Dumas R,Comtet JJ,Rumelhart C,Fayet M

    更新日期:2009-06-01 00:00:00

  • A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans.

    abstract::Generation of finite element (FE) meshes of vertebrae from computed tomography (CT) scans is labour intensive due to their geometric complexity. As such, techniques that simplify creation of meshes of vertebrae are needed to make FE analysis feasible for large studies and clinical applications. Techniques to obtain a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902802883

    authors: Dai Y,Niebur GL

    更新日期:2009-10-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.

    abstract::Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting an...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2018.1466117

    authors: Savonnet L,Wang X,Duprey S

    更新日期:2018-03-01 00:00:00

  • Kinematic analysis of over-determinate biomechanical systems.

    abstract::In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the over-determinate case. This is accomplished by introducing a constrained optimisati...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459412

    authors: Andersen MS,Damsgaard M,Rasmussen J

    更新日期:2009-08-01 00:00:00

  • Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.

    abstract::The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gy...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1569638

    authors: Castro APG,Ruben RB,Gonçalves SB,Pinheiro J,Guedes JM,Fernandes PR

    更新日期:2019-05-01 00:00:00

  • In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices.

    abstract::When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the ski...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1655549

    authors: Barrios-Muriel J,Romero Sánchez F,Alonso Sánchez FJ,Rodríguez Salgado D

    更新日期:2019-11-01 00:00:00

  • Interaction of microstructure and microcrack growth in cortical bone: a finite element study.

    abstract::Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behaviour in cortical bone. This study aims to develop a computational mechanics approach to evaluate microscale fracture mechanisms in bone. In this study, finite element models based o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.607444

    authors: Mischinski S,Ural A

    更新日期:2013-01-01 00:00:00