Study of age-related changes in Middle ear transfer function.

Abstract:

:Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles develop OP, and how this affects middle ear transfer function. The effect of OP on middle ear transfer function was investigated in simulations based on a finite element (FE) method. First, the FE model used in our previous study was refined, and optimized by introducing viscoelastic properties to selected soft tissues of the middle ear. Then, the FE model was used to simulate OP of the three ossicles and assess its influence on middle ear transfer function. Other possible age-related changes, such as stiffness of the joints or ligaments in the middle ear, were also investigated. The results indicated that OP of the ossicles could increase the high frequency displacement of both the umbo and stapes footplate (FP). However, the stiffness of the middle ear soft tissue can lead to the decrease of middle ear gain at lower frequencies. Furthermore, loosening of these joints or ligaments could increase displacement of the umbo and stapes FP. In conclusion, although age-related hearing loss is most commonly conceived of as sensorineural hearing loss (SNHL), we found that age-related changes may also include OP and changes in joint stiffness, but these will have little effect on middle ear transfer function in elderly people.

authors

Zhou L,Shen N,Feng M,Liu H,Duan M,Huang X

doi

10.1080/10255842.2019.1632297

subject

Has Abstract

pub_date

2019-10-01 00:00:00

pages

1093-1102

issue

13

eissn

1025-5842

issn

1476-8259

journal_volume

22

pub_type

杂志文章
  • Stress distribution in cylindrical and conical implants under rotational micromovement with different boundary conditions and bone properties: 3-D FEA.

    abstract::Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the st...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1309394

    authors: Dos Santos MBF,Meloto GO,Bacchi A,Correr-Sobrinho L

    更新日期:2017-06-01 00:00:00

  • Soft tissue modelling for applications in virtual surgery and surgical robotics.

    abstract::Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitatin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840802020412

    authors: Famaey N,Vander Sloten J

    更新日期:2008-08-01 00:00:00

  • Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    abstract::Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-sli...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1055257

    authors: Ali N,Javid K,Sajid M,Anwar Bég O

    更新日期:2016-01-01 00:00:00

  • Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    abstract::Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to eval...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.916698

    authors: Saul KR,Hu X,Goehler CM,Vidt ME,Daly M,Velisar A,Murray WM

    更新日期:2015-01-01 00:00:00

  • Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis.

    abstract::Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1584795

    authors: Ghaneei M,Ekyalimpa R,Westover L,Parent EC,Adeeb S

    更新日期:2019-05-01 00:00:00

  • Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    abstract::Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is high...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.628943

    authors: Karmakar C,Khandoker A,Begg R,Palaniswami M

    更新日期:2013-01-01 00:00:00

  • Validation performance comparison for finite element models of the human brain.

    abstract::The objective of this study was to compare the performance of six validated brain finite element (FE) models to localized brain motion validation data in five experimental configurations. Model performance was measured using the objective metric CORA (CORrelation and Analysis), where higher ratings represent better co...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1340462

    authors: Miller LE,Urban JE,Stitzel JD

    更新日期:2017-09-01 00:00:00

  • An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees.

    abstract::A computational model of an oscillatory laminar flow of an incompressible Newtonian fluid has been carried out in the proximal part of human tracheobronchial trees, either normal or with a strongly stenosed right main bronchus. After acquisition with a multislice spiral CT, the thoracic images are processed to reconst...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500289624

    authors: Fetita C,Mancini S,Perchet D,Prêteux F,Thiriet M,Vial L

    更新日期:2005-08-01 00:00:00

  • An assessment of swinger techniques for the playground swing oscillatory motion.

    abstract::Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger tech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.572280

    authors: Linge SO

    更新日期:2012-01-01 00:00:00

  • Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    abstract::Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh gen...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.499869

    authors: Ramme AJ,Shivanna KH,Magnotta VA,Grosland NM

    更新日期:2011-10-01 00:00:00

  • Virtual power based algorithm for decoupling large motions from infinitesimal strains: application to shoulder joint biomechanics.

    abstract::New trends of numerical models of human joints require more and more computation of both large amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve and very CPU time consuming. The goal of this study is to develop a new method to diminish the calculation time for t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000016843

    authors: Büchler P,Rakotomanana L,Farron A

    更新日期:2002-12-01 00:00:00

  • Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.

    abstract::Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting an...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2018.1466117

    authors: Savonnet L,Wang X,Duprey S

    更新日期:2018-03-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Maxillary expansion treatment using bone anchors: development and validation of a 3D finite element model.

    abstract:OBJECTIVE:Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA). MATERIALS AND METHODS:A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm di...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601098098

    authors: Fang Y,Lagravère MO,Carey JP,Major PW,Toogood RR

    更新日期:2007-04-01 00:00:00

  • An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.

    abstract::Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advanta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545949

    authors: Saleh MD,Eswaran C

    更新日期:2012-01-01 00:00:00

  • Propagation of registration errors into the change in maximum total point motion for determining stability of tibial baseplates.

    abstract::The change in maximum total point motion (ΔMTPM) is used to predict long-term risk of tibial baseplate loosening, however, effects of registration error on ΔMTPM have not been quantified for marker-based and model-based radiostereometric analysis (RSA). Registration errors for marker-based and model-based RSA were app...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1865324

    authors: Niesen AE,Hull ML

    更新日期:2021-01-05 00:00:00

  • An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.

    abstract::The rate of bone loss is subject to considerable variation between individuals. With the 'mechanostat' model of Frost, genetic variations in bone mechanoresponsiveness are modelled by different mechanostat 'setpoints'--which may also change with age or disease. In this paper, the following setpoints are used: epsilonm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802136150

    authors: Mulvihill BM,Prendergast PJ

    更新日期:2008-10-01 00:00:00

  • Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.

    abstract::Abnormal haemodynamic parameters are associated with atheroma plaque progression and instability in coronary arteries. Flow recirculation, shear stress and pressure gradient are understood to be important pathogenic mediators in coronary disease. The effect of freedom of coronary artery movement on these parameters is...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1215439

    authors: Javadzadegan A,Yong AS,Chang M,Ng MK,Behnia M,Kritharides L

    更新日期:2017-02-01 00:00:00

  • Cluster analysis of pressure pain threshold maps from the trapezius muscle.

    abstract::The aim of this study was to investigate and present a new mapping method to describe muscle pain sensitivity based on the assessment of pressure pain threshold (PPT) over the trapezius muscle. PPT data were recorded from 36 points in 20 healthy males using a standardised grid. Points were clustered using the K-means ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903446979

    authors: Binderup AT,Arendt-Nielsen L,Madeleine P

    更新日期:2010-12-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms.

    abstract::Haemodynamics is believed to play an important role in the initiation, growth and rupture of intracranial aneurysms. In this context, computational haemodynamics has been extensively used in an effort to establish correlations between flow variables and clinical outcome. It is common practice in the application of Dir...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802654335

    authors: Marzo A,Singh P,Reymond P,Stergiopulos N,Patel U,Hose R

    更新日期:2009-08-01 00:00:00

  • Flexural and creep properties of human jaw compact bone for FEA studies.

    abstract::The aim of this work was to improve the constitutive model of the human mandible and dentition system by taking into account the non-linear material properties of the structural boney matrix that forms the human jaw bone or mandible. Due to the specific structure of the jaw bone the time dependence of the mechanical p...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840310001637257

    authors: Vitins V,Dobelis M,Middleton J,Limbert G,Knets I

    更新日期:2003-10-01 00:00:00

  • Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine.

    abstract::The objective of this investigation was to develop probabilistic finite element (FE) models of the anterior longitudinal ligament (ALL) and posterior longitudinal ligament (PLL) of the cervical spine that incorporate the natural variability of biological specimens. In addition to the model development, a rigorous vali...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.726353

    authors: Francis WL,Eliason TD,Thacker BH,Paskoff GR,Shender BS,Nicolella DP

    更新日期:2014-01-01 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • The effects of changing bone and muscle size on limb inertial properties and limb dynamics: a computer simulation.

    abstract::The magnitude and distribution of bone and muscle mass within limbs affect limb inertial properties, maximum movement speed and the energy required to maintain submaximal movements. Musculoskeletal modeling and movement simulations were used to determine how changes in bone and muscle cross-sectional area (and thus ma...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 临床试验,杂志文章

    doi:10.1080/10255840410001727823

    authors: Dellanini L,Hawkins D,Martin B,Stover S

    更新日期:2004-06-01 00:00:00

  • Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions.

    abstract::Three-dimensional finite element models of the thoracolumbar junction (T12-L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography im...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.636741

    authors: Erdem I,Truumees E,van der Meulen MC

    更新日期:2013-01-01 00:00:00

  • The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane.

    abstract::The 2D shape of the lumbar spine in the sagittal plane can be determined from lordosis angles measured between the corresponding end-plates of the vertebral bodies or by using an active shape model (ASM) of the vertebral body outline. The ASM was previously shown to be a more efficient and reliable method, but its acc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518962

    authors: Ali AH,Cowan AB,Gregory JS,Aspden RM,Meakin JR

    更新日期:2012-01-01 00:00:00

  • Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    abstract::This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a thre...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792809

    authors: Wei F,Fong DT,Chan KM,Haut RC

    更新日期:2015-01-01 00:00:00

  • Skeletonization of volumetric angiograms for display.

    abstract::The display of three-dimensional angiograms can benefit from the knowledge of quantitative shape features such as tangent and curvature of the centerline of vessels. These can be obtained from a curve-like skeleton representation. If connectivity and topology are preserved, and if geometrical constraints such as smoot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000003874

    authors: Yi D,Hayward V

    更新日期:2002-10-01 00:00:00

  • Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model.

    abstract::Convective transports in the vertebral end plate (VEP) play a significant role in the homeostasis of the spine. A few studies hypothesised that the hydraulic resistance or effective permeability of the VEP could be dependant upon fluid-flow direction. Results were influenced by species, region of interest within the e...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518960

    authors: Swider P,Accadbled F,Laffosse JM,Sales de Gauzy J

    更新日期:2012-01-01 00:00:00