An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees.

Abstract:

:A computational model of an oscillatory laminar flow of an incompressible Newtonian fluid has been carried out in the proximal part of human tracheobronchial trees, either normal or with a strongly stenosed right main bronchus. After acquisition with a multislice spiral CT, the thoracic images are processed to reconstruct the geometry of the trachea and the first six bronchus generations and to virtually travel inside this duct network. The facetisation associated with the 3D reconstruction of the tracheobronchial tree is improved to get a computation-adapted surface triangulation, which leads to a volumic mesh composed of tetrahedra. The Navier-Stokes equations associated with the classical boundary conditions and different values of the flow dimensionless parameters are solved using the finite element method. The airways are supposed to be rigid during rest breathing. The flow distribution among the set of bronchi is determined during the respiratory cycle. Cycle reproducibility and mesh size effects on the numerical results are examined. Helpful qualitative data are provided rather than accurate quantitative results in the context of multimodelling, from image processing to numerical simulations.

authors

Fetita C,Mancini S,Perchet D,Prêteux F,Thiriet M,Vial L

doi

10.1080/10255840500289624

keywords:

subject

Has Abstract

pub_date

2005-08-01 00:00:00

pages

279-93

issue

4

eissn

1025-5842

issn

1476-8259

pii

K454726307N86025

journal_volume

8

pub_type

杂志文章
  • Oscillatory shear stress created by fluid pulsatility versus flexed specimen configurations.

    abstract::Oscillatory shear stress (OSS), caused by time-varying flow environments, may play a critical role in the production of engineered tissue by bone marrow-derived stem cells. This is particularly relevant in heart valve tissue engineering (HVTE), owing to the intense haemodynamic environments that surround native valves...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.715157

    authors: Salinas M,Schmidt DE,Libera M,Lange RR,Ramaswamy S

    更新日期:2014-05-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    abstract::Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens fr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1041022

    authors: Baumann AP,Shi X,Roeder RK,Niebur GL

    更新日期:2016-01-01 00:00:00

  • The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane.

    abstract::The 2D shape of the lumbar spine in the sagittal plane can be determined from lordosis angles measured between the corresponding end-plates of the vertebral bodies or by using an active shape model (ASM) of the vertebral body outline. The ASM was previously shown to be a more efficient and reliable method, but its acc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518962

    authors: Ali AH,Cowan AB,Gregory JS,Aspden RM,Meakin JR

    更新日期:2012-01-01 00:00:00

  • Optimal mechanical design of anatomical post-systems for endodontic restoration.

    abstract::This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcement...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903065530

    authors: Maceri F,Martignoni M,Vairo G

    更新日期:2009-02-01 00:00:00

  • Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance.

    abstract::In some cases of aortic valve leaflet disease, the implant of a stentless biological prosthesis represents an excellent option for aortic valve replacement (AVR). In particular, if compared with the implant of mechanical valves, it provides a more physiological haemodynamic performance and a reduced thrombogeneticity,...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.681645

    authors: Auricchio F,Conti M,Ferrara A,Morganti S,Reali A

    更新日期:2014-01-01 00:00:00

  • Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.

    abstract::The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1577398

    authors: Qiao Y,Zeng Y,Ding Y,Fan J,Luo K,Zhu T

    更新日期:2019-05-01 00:00:00

  • Physiological complexity of gait is decreased in individuals with chronic stroke.

    abstract::Complexity represents the adaptability of the biological system, therefore the assessment of complexity during tasks such as walking may be particularly useful when attempting to better understand the recovery processes after stroke. The purpose of this study was to determine whether the complexity of lower extremity ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1578961

    authors: Dugan EL,Combs-Miller SA

    更新日期:2019-05-01 00:00:00

  • How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?

    abstract::Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.627682

    authors: Loerakker S,Solis LR,Bader DL,Baaijens FP,Mushahwar VK,Oomens CW

    更新日期:2013-01-01 00:00:00

  • Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis.

    abstract::Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1584795

    authors: Ghaneei M,Ekyalimpa R,Westover L,Parent EC,Adeeb S

    更新日期:2019-05-01 00:00:00

  • Subject-specific musculoskeletal modelling in patients before and after total hip arthroplasty.

    abstract::The goal of this study was to define the effect on hip contact forces of including subject-specific moment generating capacity in the musculoskeletal model by scaling isometric muscle strength and by including geometrical information in control subjects, hip osteoarthritis and total hip arthroplasty patients. Scaling ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1181174

    authors: Wesseling M,De Groote F,Meyer C,Corten K,Simon JP,Desloovere K,Jonkers I

    更新日期:2016-11-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • Muscle parameters estimation based on biplanar radiography.

    abstract::The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Res...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1171855

    authors: Dubois G,Rouch P,Bonneau D,Gennisson JL,Skalli W

    更新日期:2016-11-01 00:00:00

  • A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter.

    abstract::This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903097871

    authors: Abolfathi N,Naik A,Sotudeh Chafi M,Karami G,Ziejewski M

    更新日期:2009-06-01 00:00:00

  • Density-based load estimation using two-dimensional finite element models: a parametric study.

    abstract::A parametric investigation was conducted to determine the effects on the load estimation method of varying: (1) the thickness of back-plates used in the two-dimensional finite element models of long bones, (2) the number of columns of nodes in the outer medial and lateral sections of the diaphysis to which the back-pl...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600792451

    authors: Bona MA,Martin LD,Fischer KJ

    更新日期:2006-08-01 00:00:00

  • Flexural and creep properties of human jaw compact bone for FEA studies.

    abstract::The aim of this work was to improve the constitutive model of the human mandible and dentition system by taking into account the non-linear material properties of the structural boney matrix that forms the human jaw bone or mandible. Due to the specific structure of the jaw bone the time dependence of the mechanical p...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840310001637257

    authors: Vitins V,Dobelis M,Middleton J,Limbert G,Knets I

    更新日期:2003-10-01 00:00:00

  • Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    abstract::Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.951926

    authors: Karakolis T,Callaghan JP

    更新日期:2015-01-01 00:00:00

  • The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.

    abstract::The purpose of this simulation study was to analyze the effect of variation in Knee-Ankle-Foot-Orthosis stiffness on the joint power and the energy cost of walking. The effect of contractile tissue was simulated using linear elastic spring and viscous dampers in knee and ankle joints. Then, joint angles, ground reacti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1438417

    authors: Abtahi SMA,Jamshidi N,Ghaziasgar A

    更新日期:2018-02-01 00:00:00

  • An interactive surgical simulation tool to assess the consequences of a partial glossectomy on a biomechanical model of the tongue.

    abstract::Oral cancer surgery has a negative influence on the quality of life (QOL). As a result of the complex physiology involved in oral functions, estimation of surgical effects on functionality remains difficult. We present a user-friendly biomechanical simulation of tongue surgery, including closure with suturing and scar...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1599362

    authors: Kappert KDR,van Alphen MJA,van Dijk S,Smeele LE,Balm AJM,van der Heijden F

    更新日期:2019-06-01 00:00:00

  • A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    abstract::The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1321113

    authors: Dong S,Huang Z,Tang L,Zhang X,Zhang Y,Jiang Y

    更新日期:2017-07-01 00:00:00

  • New method for estimating arterial pulse wave velocity at single site.

    abstract::The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressur...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1423290

    authors: Abdessalem KB,Flaud P,Zobaidi S

    更新日期:2018-01-01 00:00:00

  • Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart.

    abstract::Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1183122

    authors: Nikou A,Dorsey SM,McGarvey JR,Gorman JH 3rd,Burdick JA,Pilla JJ,Gorman RC,Wenk JF

    更新日期:2016-12-01 00:00:00

  • A multi-body dynamics study on a weight-drop test of rat brain injury.

    abstract::Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI s...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1280733

    authors: Yan W,Sossou G,Rajan R

    更新日期:2017-05-01 00:00:00

  • Cluster analysis of pressure pain threshold maps from the trapezius muscle.

    abstract::The aim of this study was to investigate and present a new mapping method to describe muscle pain sensitivity based on the assessment of pressure pain threshold (PPT) over the trapezius muscle. PPT data were recorded from 36 points in 20 healthy males using a standardised grid. Points were clustered using the K-means ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903446979

    authors: Binderup AT,Arendt-Nielsen L,Madeleine P

    更新日期:2010-12-01 00:00:00

  • Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta.

    abstract::Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consist...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.887698

    authors: Caballero AD,Laín S

    更新日期:2015-08-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.

    abstract::To analyze the biomechanical effect of syndesmotic screw through three and four cortices, a total of 12 finite element models simulating healthy ankles, tibiofibular syndesmosis injured ankles, and post-operative ankles by screw fixations through three or four cortices were built. A set of biomechanical data were obta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1472770

    authors: Li H,Chen Y,Qiang M,Zhang K,Jiang Y,Zhang Y,Jia X

    更新日期:2018-04-01 00:00:00

  • Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.

    abstract::Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting an...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2018.1466117

    authors: Savonnet L,Wang X,Duprey S

    更新日期:2018-03-01 00:00:00

  • Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.

    abstract::In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary condit...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.497490

    authors: Dinarvand S

    更新日期:2011-10-01 00:00:00

  • Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions.

    abstract::Finite element analysis provides a means of describing cellular mechanics in tissue, which can be useful in understanding and predicting physiological and pathological changes. Many prior studies have been limited to simulations of models containing single cells, which may not accurately describe the influence of mech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.900545

    authors: Bennetts CJ,Sibole S,Erdemir A

    更新日期:2015-01-01 00:00:00