Muscle parameters estimation based on biplanar radiography.

Abstract:

:The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

authors

Dubois G,Rouch P,Bonneau D,Gennisson JL,Skalli W

doi

10.1080/10255842.2016.1171855

subject

Has Abstract

pub_date

2016-11-01 00:00:00

pages

1592-8

issue

15

eissn

1025-5842

issn

1476-8259

journal_volume

19

pub_type

杂志文章
  • Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions.

    abstract::We present a one-dimensional (1D) fluid dynamic model that can predict blood flow and blood pressure during exercise using data collected at rest. To facilitate accurate prediction of blood flow, we developed an impedance boundary condition using morphologically derived structured trees. Our model was validated by com...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601068638

    authors: Steele BN,Olufsen MS,Taylor CA

    更新日期:2007-02-01 00:00:00

  • Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.

    abstract::The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1577398

    authors: Qiao Y,Zeng Y,Ding Y,Fan J,Luo K,Zhu T

    更新日期:2019-05-01 00:00:00

  • Biomechanical analysis of the anterior cervical fusion.

    abstract::This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.597351

    authors: Fernandes PC,Fernandes PR,Folgado JO,Levy Melancia J

    更新日期:2012-01-01 00:00:00

  • Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions.

    abstract::Three-dimensional finite element models of the thoracolumbar junction (T12-L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography im...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.636741

    authors: Erdem I,Truumees E,van der Meulen MC

    更新日期:2013-01-01 00:00:00

  • Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    abstract::Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is high...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.628943

    authors: Karmakar C,Khandoker A,Begg R,Palaniswami M

    更新日期:2013-01-01 00:00:00

  • A review of numerical methods for red blood cell flow simulation.

    abstract::In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255842.2013.783574

    authors: Ju M,Ye SS,Namgung B,Cho S,Low HT,Leo HL,Kim S

    更新日期:2015-01-01 00:00:00

  • Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation.

    abstract::In this article, we discuss an application of a fictitious domain method to the numerical simulation of the mechanical process induced by press-fitting cementless femoral implants in total hip replacement surgeries. Here, the primary goal is to demonstrate the feasibility of the method and its advantages over competin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545822

    authors: Kallivokas LF,Na SW,Ghattas O,Jaramaz B

    更新日期:2012-01-01 00:00:00

  • Soft tissue modelling for applications in virtual surgery and surgical robotics.

    abstract::Soft tissue modelling has gained a great deal of importance, for a large part due to its application in surgical training simulators for minimally invasive surgery (MIS). This article provides a structured overview of different continuum-mechanical models that have been developed over the years. It aims at facilitatin...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章,评审

    doi:10.1080/10255840802020412

    authors: Famaey N,Vander Sloten J

    更新日期:2008-08-01 00:00:00

  • A computational study of the EN 1078 impact test for bicycle helmets using a realistic subject-specific finite element head model.

    abstract::In the present study, the free fall impact test in accordance with the EN1078 standard for certification of bicycle helmets is replicated using numerical simulations. The impact scenario is simulated using an experimentally validated, patient-specific head model equipped with and without a bicycle helmet. Head acceler...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1511775

    authors: Sandberg M,Tse KM,Tan LB,Lee HP

    更新日期:2018-09-01 00:00:00

  • Parametric finite element analysis and closed-form solutions in orthodontics.

    abstract::The goal and clinical relevance of this work was the development of closed formulas that are correct and simple enough for a fast decision making by the orthodontist in the daily praxis. This paper performs a parametric three-dimensional finite element linear analysis on a maxillary central incisor with a root of para...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840290032126

    authors: Provatidis CG

    更新日期:2002-04-01 00:00:00

  • Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion.

    abstract::The Montgomery T-tube is used as a combined tracheal stent and airway after laryngotracheoplasty, to keep the lumen open and prevent mucosal laceration from scarring. It is valuable in the management of upper and mid-tracheal lesions, while invaluable in long and multisegmental stenting lesions. Numerical simulations ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.930448

    authors: Trabelsi O,Malvè M,Mena Tobar A,Doblaré M

    更新日期:2015-01-01 00:00:00

  • Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions.

    abstract::Finite element analysis provides a means of describing cellular mechanics in tissue, which can be useful in understanding and predicting physiological and pathological changes. Many prior studies have been limited to simulations of models containing single cells, which may not accurately describe the influence of mech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.900545

    authors: Bennetts CJ,Sibole S,Erdemir A

    更新日期:2015-01-01 00:00:00

  • Optimisation of solute transport in dialysers using a three-dimensional finite volume model.

    abstract::Dialyser manufacturers only provide limited information about mass removal under well-defined flow and solute conditions in commercially available dialysers for hemodialysis. This computational study aimed at assessing the solute transport efficiency in a dialyser for different geometries (fiber lengths and diameters)...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601002728

    authors: Eloot S,Vierendeels J,Verdonck P

    更新日期:2006-12-01 00:00:00

  • Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.

    abstract::The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gy...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1569638

    authors: Castro APG,Ruben RB,Gonçalves SB,Pinheiro J,Guedes JM,Fernandes PR

    更新日期:2019-05-01 00:00:00

  • Simulation of the Seated Postural Stability of Healthy and Spinal Cord-Injured Subjects Using Optimal Feedback Control Methods.

    abstract::A two-dimensional, biomechanical computer model was developed, using the software package Working Model(TM), to simulate the postural control of seated individuals. Both able-bodied and spinal cord-injured subjects were represented. The model incorporated active control of the upper body through full-state feedback. S...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840008915256

    authors: Kamper D,Barin K,Parnianpour M,Hemami H,Weed H

    更新日期:2000-01-01 00:00:00

  • The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane.

    abstract::The 2D shape of the lumbar spine in the sagittal plane can be determined from lordosis angles measured between the corresponding end-plates of the vertebral bodies or by using an active shape model (ASM) of the vertebral body outline. The ASM was previously shown to be a more efficient and reliable method, but its acc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518962

    authors: Ali AH,Cowan AB,Gregory JS,Aspden RM,Meakin JR

    更新日期:2012-01-01 00:00:00

  • The effects of manufacturing tolerances and assembly force on the volumetric wear at the taper junction in modular total hip arthroplasty.

    abstract::Fretting and corrosion at the taper-head interface in total hip arthroplasty has been reported as a potential cause of early failure of the implant system. The finite element (FE) method can be used to study the mechanics at the taper junction that are difficult to assess experimentally. Taper mismatch is one of the f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1627524

    authors: Bitter T,Khan I,Marriott T,Lovelady E,Verdonschot N,Janssen D

    更新日期:2019-10-01 00:00:00

  • Finite element modelling and simulations in dentistry: a bibliography 1990-2003.

    abstract::The paper gives a bibliographical review of the finite element modelling and simulations in dentistry from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2003. At the end of this pape...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type:

    doi:10.1080/10255840412331309243

    authors: Mackerle J

    更新日期:2004-10-01 00:00:00

  • Linking mutated primary structure of adrenoleukodystrophy protein with X-linked adrenoleukodystrophy.

    abstract::The phenotype expression in X-linked adrenoleukodystrophy is one of the most intriguing issues of the disease, because there is no general correlation between the type of ABCD1 gene mutation and the clinical phenotype. In this study, we use the cross-impact analysis to build a descriptively quantitative relationship b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903279974

    authors: Yan S,Wu G

    更新日期:2010-06-01 00:00:00

  • The effects of changing bone and muscle size on limb inertial properties and limb dynamics: a computer simulation.

    abstract::The magnitude and distribution of bone and muscle mass within limbs affect limb inertial properties, maximum movement speed and the energy required to maintain submaximal movements. Musculoskeletal modeling and movement simulations were used to determine how changes in bone and muscle cross-sectional area (and thus ma...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 临床试验,杂志文章

    doi:10.1080/10255840410001727823

    authors: Dellanini L,Hawkins D,Martin B,Stover S

    更新日期:2004-06-01 00:00:00

  • Influence of mastication and edentulism on mandibular bone density.

    abstract::The aim of this study was to demonstrate that external loading due to daily activities, including mastication, speech and involuntary open-close cycles of the jaw contributes to the internal architecture of the mandible. A bone remodelling algorithm that regulates the bone density as a function of stress and loading c...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.792916

    authors: Chou HY,Satpute D,Müftü A,Mukundan S,Müftü S

    更新日期:2015-01-01 00:00:00

  • The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    abstract::Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens fr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1041022

    authors: Baumann AP,Shi X,Roeder RK,Niebur GL

    更新日期:2016-01-01 00:00:00

  • Identification and characterisation of regional variations in the material properties of ureter according to microstructure.

    abstract::There are few previous studies on the elastic properties of ureter and most have been limited to essentially one-dimensional deformation measurements. The object of this study was, therefore, to identify regional variations in the multiaxial behaviour of rabbit ureter, subjected to in vitro inflation/extension testing...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.761692

    authors: Sokolis DP

    更新日期:2014-11-01 00:00:00

  • An assessment of swinger techniques for the playground swing oscillatory motion.

    abstract::Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger tech...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.572280

    authors: Linge SO

    更新日期:2012-01-01 00:00:00

  • Experimental parameter estimation method for nonlinear viscoelastic composite material models: an application on arterial tissue.

    abstract::This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and soci...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.666532

    authors: Sunbuloglu E,Bozdag E,Toprak T,Islak C

    更新日期:2013-01-01 00:00:00

  • Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.

    abstract::Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to eval...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.916698

    authors: Saul KR,Hu X,Goehler CM,Vidt ME,Daly M,Velisar A,Murray WM

    更新日期:2015-01-01 00:00:00

  • Physiological complexity of gait is decreased in individuals with chronic stroke.

    abstract::Complexity represents the adaptability of the biological system, therefore the assessment of complexity during tasks such as walking may be particularly useful when attempting to better understand the recovery processes after stroke. The purpose of this study was to determine whether the complexity of lower extremity ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1578961

    authors: Dugan EL,Combs-Miller SA

    更新日期:2019-05-01 00:00:00

  • The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.

    abstract::The purpose of this simulation study was to analyze the effect of variation in Knee-Ankle-Foot-Orthosis stiffness on the joint power and the energy cost of walking. The effect of contractile tissue was simulated using linear elastic spring and viscous dampers in knee and ankle joints. Then, joint angles, ground reacti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1438417

    authors: Abtahi SMA,Jamshidi N,Ghaziasgar A

    更新日期:2018-02-01 00:00:00

  • The effect of direct and indirect force transmission on peri-implant bone stress - a contact finite element analysis.

    abstract::In almost all finite element (FE) studies in dentistry, virtual forces are applied directly to dentures. The purpose of this study was to develop a FE model with non-linear contact simulation using an antagonist as force transmitter and to compare this with a similar model that uses direct force transmission. Furtherm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1338691

    authors: Rand A,Stiesch M,Eisenburger M,Greuling A

    更新日期:2017-08-01 00:00:00

  • The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

    abstract::Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1777546

    authors: Watson PJ,Fagan MJ,Dobson CA

    更新日期:2020-10-01 00:00:00