New method for estimating arterial pulse wave velocity at single site.

Abstract:

:The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressure (P) and arterial diameter (D) at single-location. Pulse waveforms generated by: (1) two-dimensional (2D) fluid-structure interaction simulation (FSI) in a compliant tube, (2) one-dimensional (1D) model of 55 larger human systemic arteries and (3) experimental data were used to validate the new formula and evaluate several classical methods. The performance of the proposed method was assessed by comparing its results to theoretical PWV calculated from the parameters of the model and/or to PWV estimated by several classical methods. It was found that values of PWV obtained by the developed method [Formula: see text] are in good agreement with theoretical ones and with those calculated by PA-loop and D2P-loop. The difference between the PWV calculated by [Formula: see text] and PA-loop does not exceed 1% when data from simulations are used, 3% when in vitro data are used and 5% when in vivo data are used. In addition, this study suggests that estimated PWV from arterial pressure and diameter waveforms provide correct values while methods that require flow rate (Q) and velocity (U) overestimate or underestimate PWV.

authors

Abdessalem KB,Flaud P,Zobaidi S

doi

10.1080/10255842.2017.1423290

subject

Has Abstract

pub_date

2018-01-01 00:00:00

pages

55-64

issue

1

eissn

1025-5842

issn

1476-8259

journal_volume

21

pub_type

杂志文章
  • The effects of manufacturing tolerances and assembly force on the volumetric wear at the taper junction in modular total hip arthroplasty.

    abstract::Fretting and corrosion at the taper-head interface in total hip arthroplasty has been reported as a potential cause of early failure of the implant system. The finite element (FE) method can be used to study the mechanics at the taper junction that are difficult to assess experimentally. Taper mismatch is one of the f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1627524

    authors: Bitter T,Khan I,Marriott T,Lovelady E,Verdonschot N,Janssen D

    更新日期:2019-10-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    abstract::Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is high...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.628943

    authors: Karmakar C,Khandoker A,Begg R,Palaniswami M

    更新日期:2013-01-01 00:00:00

  • The effect of Knee-Ankle-Foot orthosis stiffness on the parameters of walking.

    abstract::The purpose of this simulation study was to analyze the effect of variation in Knee-Ankle-Foot-Orthosis stiffness on the joint power and the energy cost of walking. The effect of contractile tissue was simulated using linear elastic spring and viscous dampers in knee and ankle joints. Then, joint angles, ground reacti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1438417

    authors: Abtahi SMA,Jamshidi N,Ghaziasgar A

    更新日期:2018-02-01 00:00:00

  • Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    abstract::Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1375477

    authors: Liukkonen MK,Mononen ME,Tanska P,Saarakkala S,Nieminen MT,Korhonen RK

    更新日期:2017-10-01 00:00:00

  • Linking mutated primary structure of adrenoleukodystrophy protein with X-linked adrenoleukodystrophy.

    abstract::The phenotype expression in X-linked adrenoleukodystrophy is one of the most intriguing issues of the disease, because there is no general correlation between the type of ABCD1 gene mutation and the clinical phenotype. In this study, we use the cross-impact analysis to build a descriptively quantitative relationship b...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903279974

    authors: Yan S,Wu G

    更新日期:2010-06-01 00:00:00

  • Foot internal stress distribution during impact in barefoot running as function of the strike pattern.

    abstract::The aim of the present study is to examine the impact absorption mechanism of the foot for different strike patterns (rearfoot, midfoot and forefoot) using a continuum mechanics approach. A three-dimensional finite element model of the foot was employed to estimate the stress distribution in the foot at the moment of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1480760

    authors: Morales-Orcajo E,Becerro de Bengoa Vallejo R,Losa Iglesias M,Bayod J,Barbosa de Las Casas E

    更新日期:2018-05-01 00:00:00

  • Kinematic analysis of over-determinate biomechanical systems.

    abstract::In this paper, we introduce a new general method for kinematic analysis of rigid multi body systems subject to holonomic constraints. The method extends the standard analysis of kinematically determinate rigid multi body systems to the over-determinate case. This is accomplished by introducing a constrained optimisati...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459412

    authors: Andersen MS,Damsgaard M,Rasmussen J

    更新日期:2009-08-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport.

    abstract::This paper simulates an axon with a region of reversed microtubule (MT) polarity, and investigates how the degree of polar mismatching in this region affects the formation of organelle traps in the axon. The model is based on modified Smith-Simmons equations governing molecular-motor-assisted transport in neurons. It ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903505154

    authors: Kuznetsov AV

    更新日期:2010-12-01 00:00:00

  • The cushioning function of woodpecker's jaw apparatus during the pecking process.

    abstract::Woodpeckers can withstand a fierce impact during pecking without any brain injury. Although directly involved in the whole pecking, the role of the jaw apparatus played in the impact-resistant process of woodpeckers is still not fully clear. We employed finite element analysis, impact tests in vivo, and post-traumatic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1838489

    authors: Xu P,Ni Y,Lu S,Liu S,Zhou X,Fan Y

    更新日期:2021-01-13 00:00:00

  • Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    abstract::A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.903932

    authors: Gouinaud L,Katz I,Martin A,Hazebroucq J,Texereau J,Caillibotte G

    更新日期:2015-01-01 00:00:00

  • Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration.

    abstract::To explore which TLIF techniques are advantageous in reducing the risk of complications and conducive to bone fusion under the vibration. The L1-L5 finite element lumbar model was modified to simulate three different TLIF techniques (a unilateral standard cage, a crescent-shaped cage, and bilateral standard cages). Th...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1829604

    authors: Wang QD,Guo LX

    更新日期:2020-10-13 00:00:00

  • The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.

    abstract::The mechanical properties of soft biological tissues in general and early stage engineered tissues in particular limit the feasibility of conventional tensile tests for their mechanical characterisation. Furthermore, the most important mode in development of deep tissue injury (DTI) is compression. Therefore, an inver...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701771768

    authors: Cox MA,Gawlitta D,Driessen NJ,Oomens CW,Baaijens FP

    更新日期:2008-10-01 00:00:00

  • Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP Pedestrian Human Model Certification (TB024).

    abstract::Accident statistics show that more than 80% of car-to-pedestrian collisions (CPC) occur when pedestrians cross the road. It is very important to establish a finite element model with natural walking posture to study the kinematics and injury mechanism of pedestrians. In this study, a finite element model of six-year-o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1810677

    authors: Li H,Li K,Huang Y,Lv W,Cui S,He L,Ruan JS,Wang C

    更新日期:2020-09-02 00:00:00

  • Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.

    abstract::This article is focused on the role of anisotropic elasticity in the simulation of the load distribution in a human mandible, due to a lateral bite on the leftmost premolar. Based on experimental evidence, orthotropy of the elastic properties of the bone tissue has been adopted. The trajectories of anisotropic elastic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600661482

    authors: Kober C,Erdmann B,Hellmich C,Sader R,Zeilhofer HF

    更新日期:2006-04-01 00:00:00

  • A validated computational framework to evaluate the stiffness of 3D printed ankle foot orthoses.

    abstract::The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their sp...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1601712

    authors: Ielapi A,Lammens N,Van Paepegem W,Forward M,Deckers JP,Vermandel M,De Beule M

    更新日期:2019-06-01 00:00:00

  • Parametric finite element analysis and closed-form solutions in orthodontics.

    abstract::The goal and clinical relevance of this work was the development of closed formulas that are correct and simple enough for a fast decision making by the orthodontist in the daily praxis. This paper performs a parametric three-dimensional finite element linear analysis on a maxillary central incisor with a root of para...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840290032126

    authors: Provatidis CG

    更新日期:2002-04-01 00:00:00

  • Accuracy of femur reconstruction from sparse geometric data using a statistical shape model.

    abstract::Sparse geometric information from limited field-of-view medical images is often used to reconstruct the femur in biomechanical models of the hip and knee. However, the full femur geometry is needed to establish boundary conditions such as muscle attachment sites and joint axes which define the orientation of joint loa...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2016.1263301

    authors: Zhang J,Besier TF

    更新日期:2017-04-01 00:00:00

  • An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss.

    abstract::The rate of bone loss is subject to considerable variation between individuals. With the 'mechanostat' model of Frost, genetic variations in bone mechanoresponsiveness are modelled by different mechanostat 'setpoints'--which may also change with age or disease. In this paper, the following setpoints are used: epsilonm...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802136150

    authors: Mulvihill BM,Prendergast PJ

    更新日期:2008-10-01 00:00:00

  • Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.

    abstract::Pelvic disorders can be associated with changes in the biomechanical properties in the muscle, ligaments and/or connective tissue form fascia and ligaments. In this sense, the study of their mechanical behavior is important to understand the structure and function of these biological soft tissues. The aim of this stud...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1304542

    authors: Silva MET,Brandão S,Parente MPL,Mascarenhas T,Natal Jorge RM

    更新日期:2017-06-01 00:00:00

  • Identification of the Constitutive Behaviour of Dental Composite Cements During Curing.

    abstract::This paper is concerned with the qualitative and quantitative description of the constitutive behaviour of dental composites during the curing process. Both generalized Kelvin- and Maxwell-models are studied and the parameters characterizing these models are determined by the means of an identification procedure based...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255849908907990

    authors: Hübsch PF,Middleton J,Feilzer AJ

    更新日期:1999-01-01 00:00:00

  • A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    abstract::The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.803081

    authors: Andrade A,Costa M,Paolucci L,Braga A,Pires F,Ugrinowitsch H,Menzel HJ

    更新日期:2015-01-01 00:00:00

  • The Influence of Flow on the Concentration of Platelet Active Substances in the Vicinity of Mural Microthrombi.

    abstract::The flow effect on the concentration of platelet active substances in the vicinity of a mural microthrombus is investigated numerically. A three-dimensional model is employed in which the mural microthrombus is modelled as a semisphere attached to a plane surface. The description of the blood flow uses the three-dimen...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/01495739808936708

    authors: Karner G,Perktold K

    更新日期:1998-01-01 00:00:00

  • Optimisation of solute transport in dialysers using a three-dimensional finite volume model.

    abstract::Dialyser manufacturers only provide limited information about mass removal under well-defined flow and solute conditions in commercially available dialysers for hemodialysis. This computational study aimed at assessing the solute transport efficiency in a dialyser for different geometries (fiber lengths and diameters)...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601002728

    authors: Eloot S,Vierendeels J,Verdonck P

    更新日期:2006-12-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    abstract::Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens fr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1041022

    authors: Baumann AP,Shi X,Roeder RK,Niebur GL

    更新日期:2016-01-01 00:00:00

  • Quantification of soft tissue balance in total knee arthroplasty using finite element analysis.

    abstract::Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be check...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.765409

    authors: Oh KJ,Park WM,Kim K,Kim YH

    更新日期:2014-01-01 00:00:00

  • Maxillary expansion treatment using bone anchors: development and validation of a 3D finite element model.

    abstract:OBJECTIVE:Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA). MATERIALS AND METHODS:A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm di...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601098098

    authors: Fang Y,Lagravère MO,Carey JP,Major PW,Toogood RR

    更新日期:2007-04-01 00:00:00

  • Identification and characterisation of regional variations in the material properties of ureter according to microstructure.

    abstract::There are few previous studies on the elastic properties of ureter and most have been limited to essentially one-dimensional deformation measurements. The object of this study was, therefore, to identify regional variations in the multiaxial behaviour of rabbit ureter, subjected to in vitro inflation/extension testing...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.761692

    authors: Sokolis DP

    更新日期:2014-11-01 00:00:00