The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.

Abstract:

:The mechanical properties of soft biological tissues in general and early stage engineered tissues in particular limit the feasibility of conventional tensile tests for their mechanical characterisation. Furthermore, the most important mode in development of deep tissue injury (DTI) is compression. Therefore, an inverse numerical-experimental approach using a finite spherical indentation test is proposed. To demonstrate the feasibility of the approach indentation tests are applied to bio-artificial muscle (BAM) tissue. BAMs are cultured in vitro with (n = 20) or without (n = 12) myoblast cells to quantify the effect of the cells on the passive transverse mechanical properties. Indentation tests are applied up to 80% of the tissue thickness. A non-linear Neo-Hookean constitutive model is fitted to the experimental results for parameter estimation. BAMs with cells demonstrated both stiffer and more non-linear material behaviour than BAMs without cells.

authors

Cox MA,Gawlitta D,Driessen NJ,Oomens CW,Baaijens FP

doi

10.1080/10255840701771768

subject

Has Abstract

pub_date

2008-10-01 00:00:00

pages

585-92

issue

5

eissn

1025-5842

issn

1476-8259

journal_volume

11

pub_type

杂志文章
  • An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.

    abstract::Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advanta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545949

    authors: Saleh MD,Eswaran C

    更新日期:2012-01-01 00:00:00

  • A new training algorithm using artificial neural networks to classify gender-specific dynamic gait patterns.

    abstract::The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.803081

    authors: Andrade A,Costa M,Paolucci L,Braga A,Pires F,Ugrinowitsch H,Menzel HJ

    更新日期:2015-01-01 00:00:00

  • The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis.

    abstract::Transcatheter aortic valve replacement (TAVR) strongly depends on the calcification patterns, which may lead to a malapposition of the stented valve and complication onsets in terms of structure kinematics and paravalvular leakage (PVL). From one anatomical-resembling model of the aortic root, six configurations with ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817409

    authors: Luraghi G,Matas JFR,Beretta M,Chiozzi N,Iannetti L,Migliavacca F

    更新日期:2020-09-14 00:00:00

  • The contribution of the glenoid labrum to glenohumeral stability under physiological joint loading using finite element analysis.

    abstract::The labrum contributes to passive glenohumeral joint stability. Cadaveric studies have demonstrated that this has position and load dependency, which has not been quantified under physiological loads. This study aims to validate subject-specific finite element (FE) models against in vitro measurements of joint stabili...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1399262

    authors: Klemt C,Nolte D,Grigoriadis G,Di Federico E,Reilly P,Bull AMJ

    更新日期:2017-11-01 00:00:00

  • Muscle moment-arms: a key element in muscle-force estimation.

    abstract::A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependenc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.818666

    authors: Ingram D,Engelhardt C,Farron A,Terrier A,Müllhaupt P

    更新日期:2015-01-01 00:00:00

  • Finite element analysis of the transfer of sound in the myringosclerotic ear.

    abstract::This work presents a biomechanical study of myringosclerosis (MS), an abnormal condition of the ear that produces calcification of the lamina propria of the eardrum. The study researched the transfer of sound to the stapes depending on the localization, dimension and calcification degree of the MS plaques. Results wer...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1010526

    authors: Berdich K,Gentil F,Parente M,Garbe C,Santos C,Paço J,Natal Jorge RM,Martins P,Faur N

    更新日期:2016-02-01 00:00:00

  • Effect of lumbar fasciae on the stability of the lower lumbar spine.

    abstract::The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370459

    authors: Choi HW,Kim YE

    更新日期:2017-10-01 00:00:00

  • A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.

    abstract::Most of musculoskeletal models (MSKM) estimate the tibiofemoral joint reaction load at a single point or do not support large lower-limb ranges. This study aimed to adapt a generic MSKM that allows large knee and hip flexions to compute medial and lateral tibiofemoral contact forces (TFCF) during gait and squat tasks....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1757662

    authors: Bedo BLS,Catelli DS,Lamontagne M,Santiago PRP

    更新日期:2020-08-01 00:00:00

  • Modelling organelle transport after traumatic axonal injury.

    abstract::This paper is motivated by recent experimental research (Tang-Schomer et al. 2012) on the formation of periodic varicosities in axons after traumatic brain injury (TBI). TBI leads to the formation of undulated distortions in the axons due to their dynamic deformation. These distortions result in the breakage of some m...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.820721

    authors: Kuznetsov IA,Kuznetsov AV

    更新日期:2015-01-01 00:00:00

  • Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.

    abstract::This study deals with recent researches undertaken by the authors in the field of hydrodynamics of human swimming. The aim of this numerical study was to investigate the flow around the entire swimmer's body. The results presented in this article focus on the combination of a 3D computational fluid dynamics code and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.683429

    authors: Popa CV,Arfaoui A,Fohanno S,Taïar R,Polidori G

    更新日期:2014-01-01 00:00:00

  • Finite element analysis as a tool for parametric prosthetic foot design and evaluation. Technique development in the solid ankle cushioned heel (SACH) foot.

    abstract::In this study, we developed an approach for prosthetic foot design incorporating motion analysis, mechanical testing and computer analysis. Using computer modeling and finite element analysis, a three-dimensional (3D), numerical foot model of the solid ankle cushioned heel (SACH) foot was constructed and analyzed base...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/1025584021000048974

    authors: Saunders MM,Schwentker EP,Kay DB,Bennett G,Jacobs CR,Verstraete MC,Njus GO

    更新日期:2003-02-01 00:00:00

  • A system for predicting and preventing work-related musculoskeletal disorders among dentists.

    abstract::Work-related musculoskeletal disorders (WMSDs) have become increasingly common among dentists and initiate a series of events that could result in a career ending. This study aims to construct a system for predicting and preventing WMSD among dentists. We used Bayesian network (BN) that describes the mutual relationsh...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.672565

    authors: Thanathornwong B,Suebnukarn S,Songpaisan Y,Ouivirach K

    更新日期:2014-01-01 00:00:00

  • Modelling of global boundary effects on harmonic motion imaging of soft tissues.

    abstract::Biomechanical imaging techniques have been developed for soft tissue characterisation and detection of breast tumours. Harmonic motion imaging (HMI) uses a focused ultrasound technology to generate a harmonic radiation force in a localised region inside a soft tissue. The resulting dynamic response is used to map the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.736500

    authors: Zhao X,Pelegri AA

    更新日期:2014-01-01 00:00:00

  • Fluid-solid interaction in arteries incorporating the autoregulation concept in boundary conditions.

    abstract::In pre-surgery decisions in hospital emergency cases, fast and reliable results of the solid and fluid mechanics problems are of great interest to clinicians. In the current investigation, an iterative process based on a pressure-type boundary condition is proposed in order to reduce the computational costs of blood f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1085026

    authors: Afkari D,Gabaldón F

    更新日期:2016-01-01 00:00:00

  • Determining the location of hip joint centre: application of a conchoid's shape to the acetabular cartilage surface of magnetic resonance images.

    abstract::Preoperative planning, or intraoperative navigation of hip surgery, including joint-preserving procedures such as osteotomy or joint-replacing procedures such as total arthroplasty, needs to be performed with a high degree of accuracy to ensure a successful outcome. The ability to precisely localise the hip joint rota...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.495064

    authors: Kang MJ,Sadri H,Stern R,Magnenat-Thalmann N,Hoffmeyer P,Ji HS

    更新日期:2011-01-01 00:00:00

  • Numerical models of auto-regulation and blood flow in the cerebral circulation.

    abstract::A two-dimensional time-dependent computational fluid dynamics model of the Circle of Willis has been developed. To simulate, not only the peripheral resistance of the cerebrovascular tree but also its auto-regulation function, a new "active" boundary condition has been defined and developed using control theory to pro...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840290032171

    authors: Ferrandez A,David T,Brown MD

    更新日期:2002-02-01 00:00:00

  • Jaw motor plasticity in health and disease.

    abstract::The human jaw's structure-function relationships are complex. A recent example of this complexity is the lateral pterygoid muscle which we now consider as a single unit made up of functional regions with activity in each dependent on the biomechanical demands of the task. We have also characterised the effects on the ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903453090

    authors: Peck CC,Wirianski A,Murray GM

    更新日期:2010-08-01 00:00:00

  • A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.

    abstract::The aim of this paper is to use a poroviscohyperelastic (PVHE) model, which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using finite element analysis models of micropipette aspira...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.996875

    authors: Nguyen TD,Oloyede A,Gu Y

    更新日期:2016-01-01 00:00:00

  • Density-based load estimation using two-dimensional finite element models: a parametric study.

    abstract::A parametric investigation was conducted to determine the effects on the load estimation method of varying: (1) the thickness of back-plates used in the two-dimensional finite element models of long bones, (2) the number of columns of nodes in the outer medial and lateral sections of the diaphysis to which the back-pl...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600792451

    authors: Bona MA,Martin LD,Fischer KJ

    更新日期:2006-08-01 00:00:00

  • Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    abstract::Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second prem...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840902788579

    authors: Khani MM,Tafazzoli-Shadpour M,Aghajani F,Naderi P

    更新日期:2009-10-01 00:00:00

  • Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

    abstract:OBJECTIVES:The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. MATERIALS AND METHODS:A mandibular bone model was obtained from a computed tomography scan. A three...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1507025

    authors: Macedo JP,Pereira J,Faria J,Souza JCM,Alves JL,López-López J,Henriques B

    更新日期:2018-09-01 00:00:00

  • A solution method for the determination of cardiac potential distributions with an alternating current source.

    abstract::A recently presented solution method for the bidomain model (Johnston et al. 2006), which involves the application of direct current for studying electrical potential in a slab of cardiac tissue, is extended here to allow the use of an applied alternating current. The advantage of using AC current, in a four-electrode...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840701747594

    authors: Johnston BM,Johnston PR,Kilpatrick D

    更新日期:2008-06-01 00:00:00

  • A two population model of prion transport through a tunnelling nanotube.

    abstract::This article develops a two prion population model that simulates prion trafficking between an infected dendritic cell and a neuron. The situation when the two cells are connected by a tunnelling nanotube (TNT) is simulated. Two mechanisms of prion transport are considered: lateral diffusion in the TNT membrane and ac...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.763938

    authors: Kuznetsov IA,Kuznetsov AV

    更新日期:2014-11-01 00:00:00

  • New method for estimating arterial pulse wave velocity at single site.

    abstract::The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressur...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1423290

    authors: Abdessalem KB,Flaud P,Zobaidi S

    更新日期:2018-01-01 00:00:00

  • Optimal mechanical design of anatomical post-systems for endodontic restoration.

    abstract::This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcement...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903065530

    authors: Maceri F,Martignoni M,Vairo G

    更新日期:2009-02-01 00:00:00

  • A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter.

    abstract::This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matr...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903097871

    authors: Abolfathi N,Naik A,Sotudeh Chafi M,Karami G,Ziejewski M

    更新日期:2009-06-01 00:00:00

  • Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH.

    abstract::Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative mot...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903064897

    authors: Zoghi-Moghadam M,Sadegh AM

    更新日期:2009-02-01 00:00:00

  • Simulation of the Seated Postural Stability of Healthy and Spinal Cord-Injured Subjects Using Optimal Feedback Control Methods.

    abstract::A two-dimensional, biomechanical computer model was developed, using the software package Working Model(TM), to simulate the postural control of seated individuals. Both able-bodied and spinal cord-injured subjects were represented. The model incorporated active control of the upper body through full-state feedback. S...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840008915256

    authors: Kamper D,Barin K,Parnianpour M,Hemami H,Weed H

    更新日期:2000-01-01 00:00:00

  • Biomechanical analysis of the anterior cervical fusion.

    abstract::This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.597351

    authors: Fernandes PC,Fernandes PR,Folgado JO,Levy Melancia J

    更新日期:2012-01-01 00:00:00

  • Inhalation pressure distributions for medical gas mixtures calculated in an infant airway morphology model.

    abstract::A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2014.903932

    authors: Gouinaud L,Katz I,Martin A,Hazebroucq J,Texereau J,Caillibotte G

    更新日期:2015-01-01 00:00:00