The cushioning function of woodpecker's jaw apparatus during the pecking process.

Abstract:

:Woodpeckers can withstand a fierce impact during pecking without any brain injury. Although directly involved in the whole pecking, the role of the jaw apparatus played in the impact-resistant process of woodpeckers is still not fully clear. We employed finite element analysis, impact tests in vivo, and post-traumatic brain anatomical observation to evaluate the protective function of the jaw apparatus. Forehead impact model and beaks impact without quadrate joints model were selected as control groups. The maximum impact force, the maximum stress of skull, the maximum strain and strain rate of brain were employed as the main parameters for comparison. The simulations showed that: the impact force, the skull's maximum von Mises stress, the brain's maximum principal strain and the principal strain rate increased by 72%, 24%, 148% and 106%, when the forehead rather than beaks were impacted; while they increased by 23%, 74%, 116% and 72% in the beaks impact without quadrate joints model. The results of simulations were supported by the anatomical observation: brain injury was not found after beak impact tests; serious hyperaemia, bleeding, and contra-coup injury were observed after forehead impact tests. This study discovered that the jaw apparatus acted as a cushion during the pecking process and the quadrate bone and joints changed the type of load and prolonged the acting time, which reduced the impact load acted on the skull and brain. This study would provide new inspirations to develop the device for brain protection, bio-inspired structure and material for energy-absorbing.

authors

Xu P,Ni Y,Lu S,Liu S,Zhou X,Fan Y

doi

10.1080/10255842.2020.1838489

subject

Has Abstract

pub_date

2021-01-13 00:00:00

pages

1-11

eissn

1025-5842

issn

1476-8259

pub_type

杂志文章
  • A computational study of systemic hydration in vocal fold collision.

    abstract::Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realis...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.772591

    authors: Bhattacharya P,Siegmund T

    更新日期:2014-01-01 00:00:00

  • Density-based load estimation using two-dimensional finite element models: a parametric study.

    abstract::A parametric investigation was conducted to determine the effects on the load estimation method of varying: (1) the thickness of back-plates used in the two-dimensional finite element models of long bones, (2) the number of columns of nodes in the outer medial and lateral sections of the diaphysis to which the back-pl...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840600792451

    authors: Bona MA,Martin LD,Fischer KJ

    更新日期:2006-08-01 00:00:00

  • Assessment of mechanical integrity for drug-eluting renal stent with micro-sized drug reservoirs.

    abstract::The drug-eluting stent (DES) has become the gold standard worldwide for the treatment of cardiovascular diseases. In recent years, an innovative variation of the DES with micro-sized drug reservoirs has been introduced. It allows programmable drug delivery with both spatial and temporal control and has several potenti...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.670851

    authors: Hsiao HM,Chiu YH

    更新日期:2013-01-01 00:00:00

  • A procedure to refine joint kinematic assessments: Functional Alignment.

    abstract::Functional Alignment is a new method to determine the orientation of a joint's primary rotational axis and the associated movement. It employs three unique concepts. First, data analyses are based upon assessment of spatial positions and not upon movement in a time sequence. Second, analyses are conducted on derived j...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.545821

    authors: Ball KA,Greiner TM

    更新日期:2012-01-01 00:00:00

  • Study of age-related changes in Middle ear transfer function.

    abstract::Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles de...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1632297

    authors: Zhou L,Shen N,Feng M,Liu H,Duan M,Huang X

    更新日期:2019-10-01 00:00:00

  • A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.

    abstract::Most of musculoskeletal models (MSKM) estimate the tibiofemoral joint reaction load at a single point or do not support large lower-limb ranges. This study aimed to adapt a generic MSKM that allows large knee and hip flexions to compute medial and lateral tibiofemoral contact forces (TFCF) during gait and squat tasks....

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1757662

    authors: Bedo BLS,Catelli DS,Lamontagne M,Santiago PRP

    更新日期:2020-08-01 00:00:00

  • Quantification of soft tissue balance in total knee arthroplasty using finite element analysis.

    abstract::Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be check...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.765409

    authors: Oh KJ,Park WM,Kim K,Kim YH

    更新日期:2014-01-01 00:00:00

  • Development of a three-dimensional body shape model of young children for child restraint design.

    abstract::The design of child restraints is guided in part by anthropometric data describing the distributions of body dimensions of children. However, three-dimensional body shape data have not been available for children younger than three years of age. This study presents body shape models for children weighing 9-23 kg in a ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1521960

    authors: Jones MLH,Ebert SM,Reed MP,Klinich KD

    更新日期:2018-11-01 00:00:00

  • A finite element model of the face including an orthotropic skin model under in vivo tension.

    abstract::Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2013.820720

    authors: Flynn C,Stavness I,Lloyd J,Fels S

    更新日期:2015-01-01 00:00:00

  • New head models extracted from thermal infrared (IR) images for dosimetry computations.

    abstract::In electromagnetic dosimetry, anatomical human models are commonly obtained by segmentation of magnetic resonance imaging or computed tomography scans. In this paper, a human head model extracted from thermal infrared images is examined in terms of its applicability to specific absorption rate (SAR) calculations. Sinc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.563738

    authors: Gasmelseed A

    更新日期:2011-07-01 00:00:00

  • Using the finite element method to model the biomechanics of the asymmetric mandible before, during and after skeletal correction by distraction osteogenesis.

    abstract::An approach was developed to evaluate the load transfer mechanism in the temporomandibular joint (TMJ) area before, during and after mandibular ramus elongation by distraction osteogenesis (DO). In a concerted approach using computer tomography, magnetic resonance imaging (MRI), and finite element analysis, three-dime...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840500237953

    authors: Cattaneo PM,Kofod T,Dalstra M,Melsen B

    更新日期:2005-06-01 00:00:00

  • Effects of medial collateral ligament release, limb correction, and soft tissue laxity on knee joint contact force distribution after medial opening wedge high tibial osteotomy: a computational study.

    abstract::In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated stand...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1549658

    authors: Purevsuren T,Khuyagbaatar B,Kim K,Kim YH

    更新日期:2019-02-01 00:00:00

  • Biomechanical analysis of the anterior cervical fusion.

    abstract::This paper presents a biomechanical analysis of the cervical C5-C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional f...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2011.597351

    authors: Fernandes PC,Fernandes PR,Folgado JO,Levy Melancia J

    更新日期:2012-01-01 00:00:00

  • Spiral blood flow in aorta-renal bifurcation models.

    abstract::The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-re...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2015.1082552

    authors: Javadzadegan A,Simmons A,Barber T

    更新日期:2016-01-01 00:00:00

  • The accuracy of active shape modelling and end-plate measurements for characterising the shape of the lumbar spine in the sagittal plane.

    abstract::The 2D shape of the lumbar spine in the sagittal plane can be determined from lordosis angles measured between the corresponding end-plates of the vertebral bodies or by using an active shape model (ASM) of the vertebral body outline. The ASM was previously shown to be a more efficient and reliable method, but its acc...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.518962

    authors: Ali AH,Cowan AB,Gregory JS,Aspden RM,Meakin JR

    更新日期:2012-01-01 00:00:00

  • Strategies towards rapid generation of forefoot model incorporating realistic geometry of metatarsals encapsulated into lumped soft tissues for personalized finite element analysis.

    abstract::Use of finite element (FE) foot model as a clinical diagnostics tool is likely to improve the specificity of foot injury predictions in the diabetic population. Here we proposed a novel workflow for rapid construction of foot FE model incorporating realistic geometry of metatarsals encapsulated into lumped forefoot's ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370458

    authors: Chen WM,Lee SJ,Lee PVS

    更新日期:2017-10-01 00:00:00

  • Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.

    abstract::The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1577398

    authors: Qiao Y,Zeng Y,Ding Y,Fan J,Luo K,Zhu T

    更新日期:2019-05-01 00:00:00

  • Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

    abstract:OBJECTIVES:The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. MATERIALS AND METHODS:A mandibular bone model was obtained from a computed tomography scan. A three...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1507025

    authors: Macedo JP,Pereira J,Faria J,Souza JCM,Alves JL,López-López J,Henriques B

    更新日期:2018-09-01 00:00:00

  • Effect of lumbar fasciae on the stability of the lower lumbar spine.

    abstract::The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1370459

    authors: Choi HW,Kim YE

    更新日期:2017-10-01 00:00:00

  • Real-time technique for conversion of skin temperature into skin blood flow: human skin as a low-pass filter for thermal waves.

    abstract::Monitoring of skin blood flow oscillations related with mechanical activity of vessels is a very useful modality during diagnosis of peripheral hemodynamic disorders. In this study, we developed a new model and technique for real-time conversion of skin temperature into skin blood flow oscillations, and vice versa. Th...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1615058

    authors: Sagaidachnyi A,Fomin A,Usanov D,Skripal A

    更新日期:2019-09-01 00:00:00

  • Permeability study of vertebral cancellous bone using micro-computational fluid dynamics.

    abstract::Understanding of cancellous bone permeability is lacking despite its importance in designing tissue engineering scaffolds for bone regeneration and orthopaedic surgery that relies on infiltration of bone cement into porous cancellous bone. We employed micro-computational fluid dynamics to investigate permeability for ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2010.539563

    authors: Teo JC,Teoh SH

    更新日期:2012-01-01 00:00:00

  • A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics.

    abstract::The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatom...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840802459404

    authors: Cheze L,Dumas R,Comtet JJ,Rumelhart C,Fayet M

    更新日期:2009-06-01 00:00:00

  • Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis.

    abstract::Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity o...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2019.1584795

    authors: Ghaneei M,Ekyalimpa R,Westover L,Parent EC,Adeeb S

    更新日期:2019-05-01 00:00:00

  • Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    abstract::Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1375477

    authors: Liukkonen MK,Mononen ME,Tanska P,Saarakkala S,Nieminen MT,Korhonen RK

    更新日期:2017-10-01 00:00:00

  • Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.

    abstract::To analyze the biomechanical effect of syndesmotic screw through three and four cortices, a total of 12 finite element models simulating healthy ankles, tibiofibular syndesmosis injured ankles, and post-operative ankles by screw fixations through three or four cortices were built. A set of biomechanical data were obta...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2018.1472770

    authors: Li H,Chen Y,Qiang M,Zhang K,Jiang Y,Zhang Y,Jia X

    更新日期:2018-04-01 00:00:00

  • Effectiveness of pedicle screw inclusion at the fracture level in short-segment fixation constructs for the treatment of thoracolumbar burst fractures: a computational biomechanics analysis.

    abstract::When treating thoracolumbar burst fractures (BF), short-segment posterior fixation (SSPF) represents a less invasive alternative to the traditional long-segment posterior fixation (LSPF) approach. However, hardware failure and loss of sagittal alignment have been reported in patients treated with SSPF. Including pedic...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2017.1366995

    authors: Elmasry S,Asfour S,Travascio F

    更新日期:2017-10-01 00:00:00

  • A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait.

    abstract::The aim of this study was to develop a generic musculoskeletal model of a healthy 10-year-old child and examine the effects of geometric scaling on the calculated values of lower-limb muscle forces during gait. Subject-specific musculoskeletal models of five healthy children were developed from in vivo MRI data, and t...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2020.1817405

    authors: Hainisch R,Kranzl A,Lin YC,Pandy MG,Gfoehler M

    更新日期:2020-09-17 00:00:00

  • Cluster analysis of pressure pain threshold maps from the trapezius muscle.

    abstract::The aim of this study was to investigate and present a new mapping method to describe muscle pain sensitivity based on the assessment of pressure pain threshold (PPT) over the trapezius muscle. PPT data were recorded from 36 points in 20 healthy males using a standardised grid. Points were clustered using the K-means ...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840903446979

    authors: Binderup AT,Arendt-Nielsen L,Madeleine P

    更新日期:2010-12-01 00:00:00

  • A system for predicting and preventing work-related musculoskeletal disorders among dentists.

    abstract::Work-related musculoskeletal disorders (WMSDs) have become increasingly common among dentists and initiate a series of events that could result in a career ending. This study aims to construct a system for predicting and preventing WMSD among dentists. We used Bayesian network (BN) that describes the mutual relationsh...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255842.2012.672565

    authors: Thanathornwong B,Suebnukarn S,Songpaisan Y,Ouivirach K

    更新日期:2014-01-01 00:00:00

  • Maxillary expansion treatment using bone anchors: development and validation of a 3D finite element model.

    abstract:OBJECTIVE:Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA). MATERIALS AND METHODS:A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm di...

    journal_title:Computer methods in biomechanics and biomedical engineering

    pub_type: 杂志文章

    doi:10.1080/10255840601098098

    authors: Fang Y,Lagravère MO,Carey JP,Major PW,Toogood RR

    更新日期:2007-04-01 00:00:00