An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

Abstract:

:Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be established. Herein we present and evaluate a novel leaflet shape-based framework to estimate the biomechanical behavior of heart valves from surface deformations by exploiting tissue structure. We determined accuracy levels using an "ideal" in vitro dataset, in which the leaflet geometry, strains, mechanical behavior, and fibrous structure were known to a high level of precision. By utilizing a simplified structural model for the leaflet mechanical behavior, we were able to limit the number of parameters to be determined per leaflet to only two. This approach allowed us to dramatically reduce the computational time and easily visualize the cost function to guide the minimization process. We determined that the image resolution and the number of available imaging frames were important components in the accuracy of our framework. Furthermore, our results suggest that it is possible to detect differences in fiber structure using our framework, thus allowing an opportunity to diagnose asymptomatic valve diseases and begin treatment at their early stages. Lastly, we observed good agreement of the final resulting stress-strain response when an averaged fiber architecture was used. This suggests that population-averaged fiber structural data may be sufficient for the application of the present framework to in vivo studies, although clearly much work remains to extend the present approach to in vivo problems.

authors

Aggarwal A,Sacks MS

doi

10.1007/s10237-015-0732-7

subject

Has Abstract

pub_date

2016-08-01 00:00:00

pages

909-32

issue

4

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-015-0732-7

journal_volume

15

pub_type

杂志文章
  • Dynamic modeling for shear stress induced ATP release from vascular endothelial cells.

    abstract::A dynamic model is proposed for shear stress induced adenosine triphosphate (ATP) release from endothelial cells (ECs). The dynamic behavior of the ATP/ADP concentration at the endothelial surface by viscous shear flow is investigated through simulation studies based on the dynamic ATP release model. The numerical res...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0088-8

    authors: Qin KR,Xiang C,Xu Z,Cao LL,Ge SS,Jiang ZL

    更新日期:2008-10-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • A mechanical model of posterior vitreous detachment and generation of vitreoretinal tractions.

    abstract::We propose a mechanical model of generation of vitreoretinal tractions in the presence of posterior vitreous detachment (PVD). PVD is a common occurrence with aging, and it consists in the separation of the vitreous body from the retina at the back pole of the eye, due to progressive shrinking of the vitreous gel. Dur...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01360-1

    authors: Di Michele F,Tatone A,Romano MR,Repetto R

    更新日期:2020-12-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature.

    abstract::Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0459-7

    authors: Maleki M,Seguin B,Fried E

    更新日期:2013-10-01 00:00:00

  • Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study.

    abstract::Recently, physiological and biomechanical studies on animal models with metal implants filling full-thickness cartilage defects have resulted in good clinical outcomes. The knowledge of the time-dependent macroscopic behavior of cartilage surrounding the metal implant is essential for understanding the joint function ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0346-7

    authors: Manda K,Eriksson A

    更新日期:2012-05-01 00:00:00

  • The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.

    abstract::Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a h...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0409-4

    authors: Turunen SM,Lammi MJ,Saarakkala S,Han SK,Herzog W,Tanska P,Korhonen RK

    更新日期:2013-06-01 00:00:00

  • Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach.

    abstract::The action induced by artificial sphincteric devices to provide urinary continence is related to the problem of evaluating the interaction between the occlusive cuff and the urethral duct. The intensity and distribution of the force induced within the region of application determine a different occlusion process and p...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0897-3

    authors: Natali AN,Carniel EL,Fontanella CG,Todros S,De Benedictis GM,Cerruto MA,Artibani W

    更新日期:2017-08-01 00:00:00

  • Simulation of multi-stage nonlinear bone remodeling induced by fixed partial dentures of different configurations: a comparative clinical and numerical study.

    abstract::This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0826-x

    authors: Liao Z,Yoda N,Chen J,Zheng K,Sasaki K,Swain MV,Li Q

    更新日期:2017-04-01 00:00:00

  • Finite element analysis of the pressure-induced deformation of Schlemm's canal endothelial cells.

    abstract::The endothelial cells lining the inner wall of Schlemm's canal (SC) in the eye are relatively unique in that they support a basal-to-apical pressure gradient that causes these cells to deform, creating giant vacuoles and transendothelial pores through which the aqueous humor flows. Glaucoma is associated with an incre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0640-2

    authors: Vargas-Pinto R,Lai J,Gong H,Ethier CR,Johnson M

    更新日期:2015-08-01 00:00:00

  • A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils.

    abstract::Cardiovascular implantable devices alter the biofluid dynamics and biochemistry of the blood in which they are placed. These perturbations can lead to thrombus formation which may or may not be desired, depending on the application. In this work, a computational model is developed that couples biofluid dynamics and bi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1059-y

    authors: Horn JD,Maitland DJ,Hartman J,Ortega JM

    更新日期:2018-12-01 00:00:00

  • Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.

    abstract::In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modelin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0945-z

    authors: Akbarzadeh P

    更新日期:2018-02-01 00:00:00

  • A time-dependent phenomenological model for cell mechano-sensing.

    abstract::Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or mu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0508-x

    authors: Borau C,Kamm RD,García-Aznar JM

    更新日期:2014-04-01 00:00:00

  • White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities.

    abstract::A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5 days old, 553-658 Pa) ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0643-z

    authors: Sullivan S,Eucker SA,Gabrieli D,Bradfield C,Coats B,Maltese MR,Lee J,Smith C,Margulies SS

    更新日期:2015-08-01 00:00:00

  • Force fluctuation on pulling a ssDNA from a carbon nanotube.

    abstract::It was reported that a single-strand DNA (ssDNA) could be inbreathed spontaneously into a carbon nanotube (CNT). In this work, the complementary process, i.e. pulling a piece of ssDNA out of a single-walled (SW) CNT, is simulated using molecular dynamic methods. The pulling force is found to fluctuate around a plateau...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0228-4

    authors: Li Z,Yang W

    更新日期:2011-04-01 00:00:00

  • Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.

    abstract::The immersed boundary method (IBM) has been frequently utilized to simulate the motion and deformation of biological cells and capsules in various flow situations. Despite the convenience in dealing with flow-membrane interaction, direct implementation of membrane viscosity in IBM suffers severe numerical instability....

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01363-y

    authors: Li P,Zhang J

    更新日期:2020-12-01 00:00:00

  • Moderately degenerated lumbar motion segments: Are they truly unstable?

    abstract::The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in bioc...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0835-9

    authors: van Rijsbergen MM,Barthelemy VM,Vrancken AC,Crijns SP,Wilke HJ,Wilson W,van Rietbergen B,Ito K

    更新日期:2017-04-01 00:00:00

  • The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling.

    abstract::The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulati...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1098-4

    authors: Pfaller MR,Hörmann JM,Weigl M,Nagler A,Chabiniok R,Bertoglio C,Wall WA

    更新日期:2019-04-01 00:00:00

  • A growth-based model for the prediction of fiber angle distribution in the intervertebral disc annulus fibrosus.

    abstract::There is a growing interest in the development of patient-specific finite element models of the human lumbar spine for both the assessment of injury risk and the development of treatment strategies. A current challenge in implementing these models is that the outer annulus fibrosus of the disc is composed of concentri...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01150-4

    authors: Michalek AJ

    更新日期:2019-10-01 00:00:00

  • A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.

    abstract::During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces, and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microves...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0635-z

    authors: Edgar LT,Maas SA,Guilkey JE,Weiss JA

    更新日期:2015-08-01 00:00:00

  • Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

    abstract::Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed f...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0762-9

    authors: Khodaee F,Vahidi B,Fatouraee N

    更新日期:2016-10-01 00:00:00

  • The influence of fluid shear stress on the remodeling of the embryonic primary capillary plexus.

    abstract::The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0001-2

    authors: Blatnik JS,Schmid-Schönbein GW,Sung LA

    更新日期:2005-12-01 00:00:00

  • Directional dependence of osteoblastic calcium response to mechanical stimuli.

    abstract::In adaptive bone remodeling, mechanical signals such as stress/strain caused by loading/deformation are believed to play important roles as regulators of the process in which osteoclastic resorption and osteoblastic formation are coordinated under a local mechanical environment. The mechanism by which cells sense and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-003-0029-0

    authors: Adachi T,Sato K,Tomita Y

    更新日期:2003-11-01 00:00:00

  • Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    abstract::A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second su...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0025-2

    authors: Anderson DD,Goldsworthy JK,Shivanna K,Grosland NM,Pedersen DR,Thomas TP,Tochigi Y,Marsh JL,Brown TD

    更新日期:2006-06-01 00:00:00

  • Mathematical modelling of corneal swelling.

    abstract::This paper presents a differential model of the corneal transport system capable of modelling thickness changes in response to osmotic perturbations applied to either limiting membrane. The work is directed towards understanding corneal behaviour in vivo. The model considers the coupled viscous flows within the cornea...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-004-0054-7

    authors: Li LY,Tighe BJ,Ruberti JW

    更新日期:2004-11-01 00:00:00

  • Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework.

    abstract::Tissue morphogenesis in multicellular organisms is accompanied by proliferative cell behaviors: cell division (increase in cell number after each cell cycle) and cell growth (increase in cell volume during each cell cycle). These proliferative cell behaviors can be regulated by multicellular dynamics to achieve proper...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0458-8

    authors: Okuda S,Inoue Y,Eiraku M,Sasai Y,Adachi T

    更新日期:2013-10-01 00:00:00

  • Computational analysis of biomechanical contributors to possible endovascular graft failure.

    abstract::This paper evaluates numerically coupled blood flow and wall structure interactions in a representative stented abdominal aortic aneurysm (AAA) model, leading potentially to endovascular graft (EVG) failure. A total of 12 biomechanical contributors to possible EVG migration were considered. The results show that after...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0003-0

    authors: Li Z,Kleinstreuer C,Farber M

    更新日期:2005-12-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    abstract::The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical con...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0499-7

    authors: Marki A,Ermilov E,Zakrzewicz A,Koller A,Secomb TW,Pries AR

    更新日期:2014-04-01 00:00:00

  • Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.

    abstract::Lymph is transported along collecting lymphatic vessels by intrinsic and extrinsic pumping. The walls have muscle of a type intermediate between blood-vascular smooth muscle and myocardium; a contracting segment between two valves (a lymphangion) constitutes a pump. This intrinsic mechanism is investigated ex vivo in ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0933-3

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2017-12-01 00:00:00