Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study.

Abstract:

:Recently, physiological and biomechanical studies on animal models with metal implants filling full-thickness cartilage defects have resulted in good clinical outcomes. The knowledge of the time-dependent macroscopic behavior of cartilage surrounding the metal implant is essential for understanding the joint function after treating such defects. We developed a model to investigate the in vivo time-dependent behavior of the tibiofemoral cartilages surrounding the metal implant, when the joint is subjected to an axial load for various defect sizes. Results show that time-dependent effects on cartilage behavior are significant, and can be simulated. These effects should be considered when evaluating the results from an implant. In particular, the depth into the cartilage where an implant is positioned and the mechanical sealing due to solidification of the poroelastic material need a time aspect. We found the maximal deformations, contact pressures and contact forces in the joint with time for the implant positioned in flush and sunk 0.3 mm into the cartilage. The latter position gives the better joint performance. The results after 60 s may be treated as the primary results, reflecting the effect of accumulation in the joint due to repeated short-time loadings. The wedge-shaped implant showed beneficial in providing mechanical sealing of cartilages surrounding the implant with time.

authors

Manda K,Eriksson A

doi

10.1007/s10237-011-0346-7

subject

Has Abstract

pub_date

2012-05-01 00:00:00

pages

731-42

issue

5

eissn

1617-7959

issn

1617-7940

journal_volume

11

pub_type

杂志文章
  • Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

    abstract::This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phospho...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0573-9

    authors: Toledano M,Aguilera FS,Cabello I,Osorio R

    更新日期:2014-11-01 00:00:00

  • Young's modulus of elasticity of Schlemm's canal endothelial cells.

    abstract::Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0156-3

    authors: Zeng D,Juzkiw T,Read AT,Chan DW,Glucksberg MR,Ethier CR,Johnson M

    更新日期:2010-02-01 00:00:00

  • Computational modeling of healing: an application of the material force method.

    abstract::The basic aim of the present contribution is the qualitative simulation of healing phenomena typically encountered in hard and soft tissue mechanics. The mechanical framework is provided by the theory of open system thermodynamics, which will be formulated in the spatial as well as in the material motion context. Whil...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-003-0034-3

    authors: Kuhl E,Steinmann P

    更新日期:2004-06-01 00:00:00

  • Inclusion-induced boundary layers in lipid vesicles.

    abstract::The equilibrium shapes of lipid vesicles are perturbed by rigid inclusions. In a two-dimensional vesicle, that may also model a cylindrically elongated tubule, the shape modifications can be determined analytically, and turn out to be significant even far from the inclusion. On the contrary, previous numerical work ha...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0066-6

    authors: Biscari P,Napoli G

    更新日期:2007-09-01 00:00:00

  • Mean arterial pressure nonlinearity in an elastic circulatory system subjected to different hematocrits.

    abstract::The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is no...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0258-y

    authors: Branigan T,Bolster D,Vázquez BY,Intaglietta M,Tartakovsky DM

    更新日期:2011-07-01 00:00:00

  • Assessment of boundary conditions for CFD simulation in human carotid artery.

    abstract::Computational fluid dynamics (CFD) is an increasingly used method for investigation of hemodynamic parameters and their alterations under pathological conditions, which are important indicators for diagnosis of cardiovascular disease. In hemodynamic simulation models, the employment of appropriate boundary conditions ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1045-4

    authors: Xu P,Liu X,Zhang H,Ghista D,Zhang D,Shi C,Huang W

    更新日期:2018-12-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • Small scale membrane mechanics.

    abstract::Large scale changes to lipid bilayer shapes are well represented by the Helfrich model. However, there are membrane processes that take place at smaller length scales that this model cannot address. In this work, we present a one-dimensional continuum model that captures the mechanics of the lipid bilayer membrane at ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0528-6

    authors: Rangamani P,Benjamini A,Agrawal A,Smit B,Steigmann DJ,Oster G

    更新日期:2014-08-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model.

    abstract::The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood puls...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0980-9

    authors: Menacho J,Rotllant L,Molins JJ,Reyes G,García-Granada AA,Balcells M,Martorell J

    更新日期:2018-04-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • Markers of inflammation collocate with increased wall stress in human coronary arterial plaque.

    abstract::In this study, we hypothesized that spatial relationships exist between the local mechanical environment and inflammatory marker expression in atherosclerotic plaques, and that these relationships are plaque-progression dependent. Histologic cross-sections were collected at regular intervals along the length of diseas...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0151-8

    authors: Hallow KM,Taylor WR,Rachev A,Vito RP

    更新日期:2009-12-01 00:00:00

  • Simulated tissue growth for 3D printed scaffolds.

    abstract::Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1040-9

    authors: Egan PF,Shea KA,Ferguson SJ

    更新日期:2018-10-01 00:00:00

  • Force fluctuation on pulling a ssDNA from a carbon nanotube.

    abstract::It was reported that a single-strand DNA (ssDNA) could be inbreathed spontaneously into a carbon nanotube (CNT). In this work, the complementary process, i.e. pulling a piece of ssDNA out of a single-walled (SW) CNT, is simulated using molecular dynamic methods. The pulling force is found to fluctuate around a plateau...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0228-4

    authors: Li Z,Yang W

    更新日期:2011-04-01 00:00:00

  • Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue.

    abstract::The mechanical behavior of most biological soft tissue is nonlinear viscoelastic rather than elastic. Many of the models previously proposed for soft tissue involve ad hoc systems of springs and dashpots or require measurement of time-dependent constitutive coefficient functions. The model proposed here is a system of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-004-0055-6

    authors: Haslach HW Jr

    更新日期:2005-03-01 00:00:00

  • A new model to simulate the elastic properties of mineralized collagen fibril.

    abstract::Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric di...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0223-9

    authors: Yuan F,Stock SR,Haeffner DR,Almer JD,Dunand DC,Brinson LC

    更新日期:2011-04-01 00:00:00

  • In vivo estimation of elastic heterogeneity in an infarcted human heart.

    abstract::In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variatio...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1028-5

    authors: Balaban G,Finsberg H,Funke S,Håland TF,Hopp E,Sundnes J,Wall S,Rognes ME

    更新日期:2018-10-01 00:00:00

  • Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.

    abstract::A three-dimensional finite-element fluid/structure interaction model of an intravascular lymphatic valve was constructed, and its properties were investigated under both favourable and adverse pressure differences, simulating valve opening and valve closure, respectively. The shear modulus of the neo-Hookean material ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01325-4

    authors: Bertram CD

    更新日期:2020-12-01 00:00:00

  • A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.

    abstract::Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0338-7

    authors: Ronken S,Arnold MP,Ardura García H,Jeger A,Daniels AU,Wirz D

    更新日期:2012-05-01 00:00:00

  • The influence of fluid shear stress on the remodeling of the embryonic primary capillary plexus.

    abstract::The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-005-0001-2

    authors: Blatnik JS,Schmid-Schönbein GW,Sung LA

    更新日期:2005-12-01 00:00:00

  • Injury risk prediction from computational simulations of ocular blast loading.

    abstract::A predictive Lagrangian-Eulerian finite element eye model was used to analyze 2.27 and 0.45 kg trinitrotoluene equivalent blasts detonated from 24 different locations. Free air and ground level blasts were simulated directly in front of the eye and at lateral offset locations with box, average, less protective, and mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0830-1

    authors: Weaver AA,Stitzel SM,Stitzel JD

    更新日期:2017-04-01 00:00:00

  • A hybrid bioregulatory model of angiogenesis during bone fracture healing.

    abstract::Bone fracture healing is a complex process in which angiogenesis or the development of a blood vessel network plays a crucial role. In this paper, a mathematical model is presented that simulates the biological aspects of fracture healing including the formation of individual blood vessels. The model consists of parti...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0241-7

    authors: Peiffer V,Gerisch A,Vandepitte D,Van Oosterwyck H,Geris L

    更新日期:2011-06-01 00:00:00

  • Influence of power-law rheology on cell injury during microbubble flows.

    abstract::The reopening of fluid-occluded pulmonary airways generates microbubble flows which impart complex hydrodynamic stresses to the epithelial cells lining airway walls. In this study we used boundary element solutions and finite element techniques to investigate how cell rheology influences the deformation and injury of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0175-0

    authors: Dailey HL,Ghadiali SN

    更新日期:2010-06-01 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • Effects of left ventricle wall thickness uncertainties on cardiac mechanics.

    abstract::Computational models of the heart have reached a level of maturity that enables sophisticated patient-specific simulations and hold potential for important applications in diagnosis and therapy planning. However, such clinical use puts strict demands on the reliability and accuracy of the models and requires the sensi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01153-1

    authors: Campos JO,Sundnes J,Dos Santos RW,Rocha BM

    更新日期:2019-10-01 00:00:00

  • A mathematical model for fluid shear-sensitive 3D tissue construct development.

    abstract::This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0378-7

    authors: Liu D,Chua CK,Leong KF

    更新日期:2013-01-01 00:00:00

  • Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation.

    abstract::The monitoring of the ciliated walls in the uterine tube has supreme importance in enhancing the sperm to reach the egg (capacitation processes), and at peristaltic ciliary flow has a more favorable residual time along the canal when compared to the peristaltic flow. Based on the importance of this study, a mathematic...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01405-5

    authors: Zaher AZ,Moawad AMA,Mekheimer KS,Bhatti MM

    更新日期:2021-01-03 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • An elasto-viscoplastic model to describe the ratcheting behavior of articular cartilage.

    abstract::In the present work, a constitutive model for articular cartilage is proposed in finite elasto-viscoplasticity. For simplification, articular cartilage is supposed to be a typical composite composed of a soft basis and a fiber assembly. The stress tensor and free energy function are hence accordingly divided into two ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1062-3

    authors: Zhu Y

    更新日期:2018-12-01 00:00:00

  • Tracking of fluorescence nanoparticles with nanometre resolution in a biological system: assessing local viscosity and microrheology.

    abstract::The aim of the study was to establish a user-friendly approach for single fluorescence particle 3D localization and tracking with nanometre precision in a standard fluorescence microscope using a point spread function (PSF) approach, and to evaluate validity and precision for different analysis methods and optical con...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0499-7

    authors: Marki A,Ermilov E,Zakrzewicz A,Koller A,Secomb TW,Pries AR

    更新日期:2014-04-01 00:00:00