The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.

Abstract:

:Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.

authors

Turunen SM,Lammi MJ,Saarakkala S,Han SK,Herzog W,Tanska P,Korhonen RK

doi

10.1007/s10237-012-0409-4

subject

Has Abstract

pub_date

2013-06-01 00:00:00

pages

417-29

issue

3

eissn

1617-7959

issn

1617-7940

journal_volume

12

pub_type

杂志文章
  • A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models.

    abstract::In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01122-8

    authors: Coccarelli A,Prakash A,Nithiarasu P

    更新日期:2019-08-01 00:00:00

  • The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.

    abstract::The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix compos...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0016-3

    authors: Han SK,Federico S,Grillo A,Giaquinta G,Herzog W

    更新日期:2007-04-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • Modeling active muscle contraction in mitral valve leaflets during systole: a first approach.

    abstract::The present study addresses the effect of muscle activation contributions to mitral valve leaflet response during systole. State-of-art passive hyperelastic material modeling is employed in combination with a simple active stress part. Fiber families are assumed in the leaflets: one defined by the collagen and one def...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0215-9

    authors: Skallerud B,Prot V,Nordrum IS

    更新日期:2011-02-01 00:00:00

  • A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    abstract::Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this st...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0857-3

    authors: Aycock KI,Campbell RL,Manning KB,Craven BA

    更新日期:2017-06-01 00:00:00

  • A new model to simulate the elastic properties of mineralized collagen fibril.

    abstract::Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric di...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0223-9

    authors: Yuan F,Stock SR,Haeffner DR,Almer JD,Dunand DC,Brinson LC

    更新日期:2011-04-01 00:00:00

  • The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling.

    abstract::The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulati...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1098-4

    authors: Pfaller MR,Hörmann JM,Weigl M,Nagler A,Chabiniok R,Bertoglio C,Wall WA

    更新日期:2019-04-01 00:00:00

  • Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor.

    abstract::Mathematical and computational modeling of the dynamic process where tissue scaffolds are cultured in perfusion bioreactors is able to provide insight into the cell and tissue growth which can facilitate the design of tissue scaffolds and selection of optimal operating conditions. To date, a resolved-scale simulation ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0606-4

    authors: Hossain MS,Bergstrom DJ,Chen XB

    更新日期:2015-04-01 00:00:00

  • Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.

    abstract::Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0851-9

    authors: Sugita S,Matsumoto T

    更新日期:2017-06-01 00:00:00

  • Computational neurotrauma--design, simulation, and analysis of controlled cortical impact model.

    abstract::The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact pa...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0212-z

    authors: Mao H,Yang KH,King AI,Yang K

    更新日期:2010-12-01 00:00:00

  • A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    abstract::Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linke...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0406-7

    authors: Fallqvist B,Kroon M

    更新日期:2013-04-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Comparison of HR-pQCT- and microCT-based finite element models for the estimation of the mechanical properties of the calcaneus trabecular bone.

    abstract::The calcaneus bone is formed of extensive trabecular bone and is therefore well suited to be used as an example of loaded bone to establish the ability of combining microfinite element (microFE) technique with high-resolution peripheral quantitative computed tomography (HR-pQCT) in determining its mechanical propertie...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1051-6

    authors: Alsayednoor J,Metcalf L,Rochester J,Dall'Ara E,McCloskey E,Lacroix D

    更新日期:2018-12-01 00:00:00

  • On the representation of effective stress for computing hemolysis.

    abstract::Hemolysis is a major concern in blood-circulating devices, which arises due to hydrodynamic loading on red blood cells from ambient flow environment. Hemolysis estimation models have often been used to aid hemocompatibility design. The preponderance of hemolysis models was formulated on the basis of laminar flows. How...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-01108-y

    authors: Wu P,Gao Q,Hsu PL

    更新日期:2019-06-01 00:00:00

  • Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    abstract::Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the developmen...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0298-y

    authors: Heise RL,Parekh A,Joyce EM,Chancellor MB,Sacks MS

    更新日期:2012-01-01 00:00:00

  • A time-dependent phenomenological model for cell mechano-sensing.

    abstract::Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or mu...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0508-x

    authors: Borau C,Kamm RD,García-Aznar JM

    更新日期:2014-04-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • Enhanced cancer cell invasion caused by fibroblasts when fluid flow is present.

    abstract::It has been demonstrated that interstitial fluid (IF) flow can play a crucial role in tumor cell progression. Swartz and collaborators (Cancer Cell 11: 526-538, Shields et al. 2007) demonstrated that cells that secrete the lymphoid homing chemokines CCL21/CCL19 and express their receptor CCR7 could use flow to bias th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01128-2

    authors: Urdal J,Waldeland JO,Evje S

    更新日期:2019-08-01 00:00:00

  • Effects of velopharyngeal openings on flow characteristics of nasal emission.

    abstract::Nasal emission is a speech disorder where undesired airflow enters the nasal cavity during speech due to inadequate closure of the velopharyngeal valve. Nasal emission is typically inaudible with large velopharyngeal openings and very distorting with small openings. This study aims to understand how flow characteristi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01280-9

    authors: Sundström E,Boyce S,Oren L

    更新日期:2020-10-01 00:00:00

  • Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study.

    abstract::The veins distributing oxygenated blood from the placenta to the fetal body have been given much attention in clinical Doppler velocimetry studies, in particular the ductus venosus. The ductus venosus is embedded in the left liver lobe and connects the intra-abdominal portion of the umbilical vein (IUV) directly to th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0460-1

    authors: Leinan PR,Degroote J,Kiserud T,Skallerud B,Vierendeels J,Hellevik LR

    更新日期:2013-10-01 00:00:00

  • Inferring spatial variations of microstructural properties from macroscopic mechanical response.

    abstract::Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used, these parameters c...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0831-0

    authors: Liu T,Hall TJ,Barbone PE,Oberai AA

    更新日期:2017-04-01 00:00:00

  • Mechanomics analysis of hESCs under combined mechanical shear, stretch, and compression.

    abstract::Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01378-5

    authors: Zhang F,Wang J,Lü D,Zheng L,Shangguan B,Gao Y,Wu Y,Long M

    更新日期:2020-08-18 00:00:00

  • Directional dependence of osteoblastic calcium response to mechanical stimuli.

    abstract::In adaptive bone remodeling, mechanical signals such as stress/strain caused by loading/deformation are believed to play important roles as regulators of the process in which osteoclastic resorption and osteoblastic formation are coordinated under a local mechanical environment. The mechanism by which cells sense and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-003-0029-0

    authors: Adachi T,Sato K,Tomita Y

    更新日期:2003-11-01 00:00:00

  • An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.

    abstract::We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law, for both active stress and active strain formulations of active mechanics, couple...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01237-y

    authors: Propp A,Gizzi A,Levrero-Florencio F,Ruiz-Baier R

    更新日期:2020-04-01 00:00:00

  • The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.

    abstract::Experimental evidence suggests that interstitial fluid flow is a stimulus for mechanoadaptation in bone. Bone adaptation is sensitive to the frequency of loading and rest insertion between load cycles. We investigated the effects of permeability, frequency and rest insertion on fluid flow in bone using finite-element ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0498-8

    authors: Pereira AF,Shefelbine SJ

    更新日期:2014-01-01 00:00:00

  • Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature.

    abstract::Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0459-7

    authors: Maleki M,Seguin B,Fried E

    更新日期:2013-10-01 00:00:00

  • A novel perspective on neuron study: damaging and promoting effects in different neurons induced by mechanical stress.

    abstract::A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章,评审

    doi:10.1007/s10237-015-0743-4

    authors: Wang Y,Wang W,Li Z,Hao S,Wang B

    更新日期:2016-10-01 00:00:00

  • A computational model that predicts reverse growth in response to mechanical unloading.

    abstract::Ventricular growth is widely considered to be an important feature in the adverse progression of heart diseases, whereas reverse ventricular growth (or reverse remodeling) is often considered to be a favorable response to clinical intervention. In recent years, a number of theoretical models have been proposed to mode...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0598-0

    authors: Lee LC,Genet M,Acevedo-Bolton G,Ordovas K,Guccione JM,Kuhl E

    更新日期:2015-04-01 00:00:00

  • Influence of power-law rheology on cell injury during microbubble flows.

    abstract::The reopening of fluid-occluded pulmonary airways generates microbubble flows which impart complex hydrodynamic stresses to the epithelial cells lining airway walls. In this study we used boundary element solutions and finite element techniques to investigate how cell rheology influences the deformation and injury of ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0175-0

    authors: Dailey HL,Ghadiali SN

    更新日期:2010-06-01 00:00:00

  • Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree.

    abstract::Inflammation, a precursor to many diseases including cancer and atherosclerosis, induces differential surface expression of specific vascular molecules. Blood-borne nanoparticles (NPs), loaded with therapeutic and imaging agents, can recognize and use these molecules as vascular docking sites. Here, a computational mo...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-013-0520-1

    authors: Hossain SS,Hughes TJ,Decuzzi P

    更新日期:2014-06-01 00:00:00