Analysis of mechanical parameters on the thromboembolism using a patient-specific computational model.

Abstract:

:Ischemic stroke is a major cause of death and long-term disabilities worldwide. In this paper, we aim to represent a comprehensive simulation of the motion of emboli through cerebrovascular network within patient-specific computational model. The model consists of major arteries of the circle of Willis reconstructed from magnetic resonance angiography images, pulsatile flow and emboli with different sizes and material properties. Here, the fluid-structure interactions method was used to simulate the motion of deformable and rigid emboli through cerebral arteries. Hemodynamic changes in the circle of Willis due to the entrance of embolus are observed. The effect of material properties on the distribution ratio and dynamics of motion of the emboli in the cerebral arterial network is also analyzed. Our results reveal that as the rigidity of emboli increases, higher proportion of them tend to enter to the larger arteries (e.g., middle cerebral artery). Scrutinizing the amount of stress acting on the emboli represented in this paper can broaden our understanding of the rheological phenomenon (e.g., lysis or growth of emboli during embolism). The approach of considering different material properties of the thrombus in a patient-specific computational model not only enable us to better understand the roll of biomechanical parameters causing the embolism, but also lead to a better clinical decision making to manage patients with stroke.

authors

Khodaee F,Vahidi B,Fatouraee N

doi

10.1007/s10237-016-0762-9

subject

Has Abstract

pub_date

2016-10-01 00:00:00

pages

1295-305

issue

5

eissn

1617-7959

issn

1617-7940

pii

10.1007/s10237-016-0762-9

journal_volume

15

pub_type

杂志文章
  • Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.

    abstract::In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modelin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0945-z

    authors: Akbarzadeh P

    更新日期:2018-02-01 00:00:00

  • A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells.

    abstract::Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1076-x

    authors: Chen ZZ,Yuan WM,Xiang C,Zeng DP,Liu B,Qin KR

    更新日期:2019-02-01 00:00:00

  • Force fluctuation on pulling a ssDNA from a carbon nanotube.

    abstract::It was reported that a single-strand DNA (ssDNA) could be inbreathed spontaneously into a carbon nanotube (CNT). In this work, the complementary process, i.e. pulling a piece of ssDNA out of a single-walled (SW) CNT, is simulated using molecular dynamic methods. The pulling force is found to fluctuate around a plateau...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0228-4

    authors: Li Z,Yang W

    更新日期:2011-04-01 00:00:00

  • Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    abstract::Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-015-0695-8

    authors: Sansalone V,Gagliardi D,Desceliers C,Bousson V,Laredo JD,Peyrin F,Haïat G,Naili S

    更新日期:2016-02-01 00:00:00

  • Creep and stress relaxation of human red cell membrane.

    abstract::In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0813-2

    authors: Fischer TM

    更新日期:2017-02-01 00:00:00

  • Inferring spatial variations of microstructural properties from macroscopic mechanical response.

    abstract::Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used, these parameters c...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-016-0831-0

    authors: Liu T,Hall TJ,Barbone PE,Oberai AA

    更新日期:2017-04-01 00:00:00

  • Directional dependence of osteoblastic calcium response to mechanical stimuli.

    abstract::In adaptive bone remodeling, mechanical signals such as stress/strain caused by loading/deformation are believed to play important roles as regulators of the process in which osteoclastic resorption and osteoblastic formation are coordinated under a local mechanical environment. The mechanism by which cells sense and ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-003-0029-0

    authors: Adachi T,Sato K,Tomita Y

    更新日期:2003-11-01 00:00:00

  • Anisotropic effects of the levator ani muscle during childbirth.

    abstract::Pelvic floor dysfunction and pelvic organ prolapse have been associated with damage to the levator ani (LA) muscle, but the exact mechanisms linking them remain unknown. It has been postulated that factors such as vaginal birth and ageing may contribute to long-term, irreversible LA muscle damage. To investigate the b...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-010-0249-z

    authors: Li X,Kruger JA,Nash MP,Nielsen PM

    更新日期:2011-07-01 00:00:00

  • Effects of left ventricle wall thickness uncertainties on cardiac mechanics.

    abstract::Computational models of the heart have reached a level of maturity that enables sophisticated patient-specific simulations and hold potential for important applications in diagnosis and therapy planning. However, such clinical use puts strict demands on the reliability and accuracy of the models and requires the sensi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01153-1

    authors: Campos JO,Sundnes J,Dos Santos RW,Rocha BM

    更新日期:2019-10-01 00:00:00

  • Finite element analysis of the pressure-induced deformation of Schlemm's canal endothelial cells.

    abstract::The endothelial cells lining the inner wall of Schlemm's canal (SC) in the eye are relatively unique in that they support a basal-to-apical pressure gradient that causes these cells to deform, creating giant vacuoles and transendothelial pores through which the aqueous humor flows. Glaucoma is associated with an incre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-014-0640-2

    authors: Vargas-Pinto R,Lai J,Gong H,Ethier CR,Johnson M

    更新日期:2015-08-01 00:00:00

  • Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature.

    abstract::Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0459-7

    authors: Maleki M,Seguin B,Fried E

    更新日期:2013-10-01 00:00:00

  • Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.

    abstract::Prior studies indicated that mechanical loading influences cell turnover and matrix remodeling in tissues, suggesting that mechanical stimuli can play an active role in engineering artificial tissues. While most tissue culture studies focus on influence of uniaxial loading or constraints, effects of multi-axial loadin...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0448-x

    authors: Hu JJ,Liu YC,Chen GW,Wang MX,Lee PY

    更新日期:2013-10-01 00:00:00

  • Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    abstract::Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0989-0

    authors: Lejeune E,Linder C

    更新日期:2018-06-01 00:00:00

  • Dynamic modeling for shear stress induced ATP release from vascular endothelial cells.

    abstract::A dynamic model is proposed for shear stress induced adenosine triphosphate (ATP) release from endothelial cells (ECs). The dynamic behavior of the ATP/ADP concentration at the endothelial surface by viscous shear flow is investigated through simulation studies based on the dynamic ATP release model. The numerical res...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-007-0088-8

    authors: Qin KR,Xiang C,Xu Z,Cao LL,Ge SS,Jiang ZL

    更新日期:2008-10-01 00:00:00

  • Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    abstract::During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their r...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1005-z

    authors: André Dias S,Planus E,Angely C,Lotteau L,Tissier R,Filoche M,Louis B,Pelle G,Isabey D

    更新日期:2018-08-01 00:00:00

  • A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth.

    abstract::Growth and remodeling in the heart is driven by a combination of mechanical and hormonal signals that produce different patterns of growth in response to exercise, pregnancy, and various pathologies. In particular, increases in afterload lead to concentric hypertrophy, a thickening of the walls that increases the cont...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-020-01385-6

    authors: Estrada AC,Yoshida K,Saucerman JJ,Holmes JW

    更新日期:2020-09-24 00:00:00

  • Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation.

    abstract::Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-006-0057-7

    authors: Milan JL,Wendling-Mansuy S,Jean M,Chabrand P

    更新日期:2007-11-01 00:00:00

  • Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology.

    abstract::The diseases of human blood vessels are closely associated with local mechanical variations. A better understanding of the quantitative correlation in mechanical environment between the current mechano-biological studies and vascular physiological or pathological conditions in vivo is crucial for evaluating numerous e...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01226-1

    authors: Yang S,Gong X,Qi Y,Jiang Z

    更新日期:2020-04-01 00:00:00

  • Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    abstract::Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the developmen...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0298-y

    authors: Heise RL,Parekh A,Joyce EM,Chancellor MB,Sacks MS

    更新日期:2012-01-01 00:00:00

  • Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis.

    abstract::The superficial femoral artery (SFA) is a typical atherosclerosis-prone site. We aimed to explore whether the tortuosity of the SFA associates with the occurrence of atherosclerosis and investigate how vascular tortuosity influences the characteristics of blood flow. Ten patients diagnosed with atherosclerotic disease...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01118-4

    authors: Li X,Liu X,Li X,Xu L,Chen X,Liang F

    更新日期:2019-08-01 00:00:00

  • On the representation of effective stress for computing hemolysis.

    abstract::Hemolysis is a major concern in blood-circulating devices, which arises due to hydrodynamic loading on red blood cells from ambient flow environment. Hemolysis estimation models have often been used to aid hemocompatibility design. The preponderance of hemolysis models was formulated on the basis of laminar flows. How...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-01108-y

    authors: Wu P,Gao Q,Hsu PL

    更新日期:2019-06-01 00:00:00

  • Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study.

    abstract::The veins distributing oxygenated blood from the placenta to the fetal body have been given much attention in clinical Doppler velocimetry studies, in particular the ductus venosus. The ductus venosus is embedded in the left liver lobe and connects the intra-abdominal portion of the umbilical vein (IUV) directly to th...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-012-0460-1

    authors: Leinan PR,Degroote J,Kiserud T,Skallerud B,Vierendeels J,Hellevik LR

    更新日期:2013-10-01 00:00:00

  • The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures.

    abstract::The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and gro...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0371-6

    authors: Shoham N,Gefen A

    更新日期:2012-09-01 00:00:00

  • Effects of velopharyngeal openings on flow characteristics of nasal emission.

    abstract::Nasal emission is a speech disorder where undesired airflow enters the nasal cavity during speech due to inadequate closure of the velopharyngeal valve. Nasal emission is typically inaudible with large velopharyngeal openings and very distorting with small openings. This study aims to understand how flow characteristi...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01280-9

    authors: Sundström E,Boyce S,Oren L

    更新日期:2020-10-01 00:00:00

  • An innovative lattice Boltzmann model for simulating Michaelis-Menten-based diffusion-advection kinetics and its application within a cartilage cell bioreactor.

    abstract::Lattice Boltzmann models (LBM) are rapidly showing their ability to simulate a lot of fluid dynamics problems that previously required very complex approaches. This study presents a LBM for simulating diffusion-advection transport of substrate in a 2-D laminar flow. The model considers the substrate influx into a set ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-009-0164-3

    authors: Moaty Sayed AA,Hussein MA,Becker T

    更新日期:2010-04-01 00:00:00

  • Flow plate separation of cells based on elastic properties: a computational study.

    abstract::Medical studies have consistently shown that the best defense against cancer is early detection. Due to this, many efforts have been made to develop methods of screening patient blood quickly and cheaply. These methods range from separation via differences in size, electrostatic potential, chemical potential, antibody...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-018-1093-9

    authors: Becton M,Averett RD,Wang X

    更新日期:2019-04-01 00:00:00

  • Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.

    abstract::Lymph is transported along collecting lymphatic vessels by intrinsic and extrinsic pumping. The walls have muscle of a type intermediate between blood-vascular smooth muscle and myocardium; a contracting segment between two valves (a lymphangion) constitutes a pump. This intrinsic mechanism is investigated ex vivo in ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-017-0933-3

    authors: Bertram CD,Macaskill C,Davis MJ,Moore JE Jr

    更新日期:2017-12-01 00:00:00

  • Modeling left ventricular dynamics with characteristic deformation modes.

    abstract::A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each m...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-019-01168-8

    authors: Hong BD,Moulton MJ,Secomb TW

    更新日期:2019-12-01 00:00:00

  • Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique.

    abstract::The present study aims at investigating biomechanical failure behaviour of human aneurismal aortic tissues so as to diagnose the rupture risk of aneurysms more accurately. An inflation test is performed on aneurismal aortic tissues up to failure and full-field measurements are achieved using stereo digital image corre...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0356-5

    authors: Kim JH,Avril S,Duprey A,Favre JP

    更新日期:2012-07-01 00:00:00

  • A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.

    abstract::Articular cartilage is a multicomponent, poroviscoelastic tissue with nonlinear mechanical properties vital to its function. A consequent goal of repair or replacement of injured cartilage is to achieve mechanical properties in the repair tissue similar to healthy native cartilage. Since fresh healthy human articular ...

    journal_title:Biomechanics and modeling in mechanobiology

    pub_type: 杂志文章

    doi:10.1007/s10237-011-0338-7

    authors: Ronken S,Arnold MP,Ardura García H,Jeger A,Daniels AU,Wirz D

    更新日期:2012-05-01 00:00:00